首页|移动场景下基于深度学习的图像辅助毫米波波束预测方案

移动场景下基于深度学习的图像辅助毫米波波束预测方案

扫码查看
针对移动环境下毫米波大规模MIMO通信系统下行链路的快速波束预测问题,提出了一种基于深度学习的图像辅助波束预测方案.该方案将基站采集的RGB图像上传至MEC服务器,通过Faster RCNN目标检测模型与DNN神经网络结合,预测通信环境中用户图像与毫米波下行链路波束向量的高维非线性关系.仿真结果表明:该方案预测下行链路波束向量的可达速率接近理论最优,在模型复杂度和高天线数低信噪比情况下的性能等方面均优于基线算法.
Deep learning based image-assisted millimeter wave beam prediction scheme in mobile scenarios
An image-assisted beam prediction scheme based on deep learning is proposed for the fast beam prediction problem in the downlink of millimeter-wave large-scale MIMO communication system in a high-speed mobile environment.Based on the RGB images collected from the base stations and uploaded to the MEC server,the Faster RCNN target detection model is combined with a DNN neural network to predict the high-dimensional nonlinear relationship between the user images and the millimeter-wave downlink beam vectors in the communication environment.The simulation results show that the scheme predicts the achievable rate of downlink beam vectors close to the theoretical optimum and outperforms the baseline algorithm in terms of model complexity and performance in the case of high antenna number and low signal-to-noise ratio.

mmWavemassive MIMObeam predictiondeep learningobject detection

李中捷、韦金迎、熊吉源、高伟

展开 >

中南民族大学 电子信息工程学院,武汉 430074

中南民族大学 智能无线通信湖北重点实验室,武汉 430074

毫米波 大规模MIMO 波束预测 深度学习 目标检测

国家自然科学基金资助项目湖北省自然科学基金资助项目中央高校基本科研业务费专项资金资助项目

613790282022CFB905CZY23027

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(2)
  • 15