首页|基于轻量级UNet的复杂背景字符语义分割网络

基于轻量级UNet的复杂背景字符语义分割网络

扫码查看
针对传统复杂背景字符分割算法的不足,提出了一种基于轻量级UNet的复杂背景字符语义分割网络.网络结构基于UNet,在特征提取模块中,将传统卷积变为深度可分离卷积,减少了网络特征提取模块的参数量以及计算量,并引入残差学习模块解决网络退化问题.在自制数据集以及H-DIBCO2018公开数据集上展开实验,并与FCN8s、AttationUNet和UNet进行比较.实验结果表明:所提出的网络可同时兼顾计算效率与分割精度,具有实用性.
Semantic segmentation network for complex background characters based on lightweight UNet
Towards the problems of traditional complex background character segmentation algorithm,a semantic segmentation network for complex background characters based on lightweight UNet is proposed.The network structure is based on UNet.In the feature extraction module,the traditional convolution is changed into deepthwise separable convolution,which greatly reduces the number of parameters and computation of the network feature extraction module.The residual learning module is introduced to solve the network degradation problem.Experiments were performed on the self-made dataset and H-DIBCO2018 open dataset,and compared with FCN8s,AttationUNet and UNet.Experimental results show that the proposed network has both computational efficiency and segmentation accuracy,and is practical.

UNetdepthwise separable convolutionresidual learning modulecomplex backgroundcharacter semantic segmentation

顾天君、孙阳光、林虎

展开 >

中南民族大学 计算机科学学院,武汉 430074

中南民族大学 湖北省制造企业智能管理工程技术研究中心,武汉 430074

UNet网络 深度可分离卷积 残差学习模块 复杂背景 字符语义分割

湖北省技术创新专项重大资助项目湖北省科技重大专项资助项目武汉市科技计划应用基础前沿资助项目

2019ABA1012020AEA0112020020601012267

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(2)
  • 20