首页|基于改进YOLOv4的轻量化目标检测方法

基于改进YOLOv4的轻量化目标检测方法

扫码查看
针对检测模型参数量大,难以在嵌入式设备上部署等问题,设计了一种改进的YOLOv4目标检测算法.该算法使用轻量化的MobileNetV1替换CSPDarketnet53主干特征提取网络,并将后续网络中的3×3卷积替换为深度可分离卷积,极大地减少了模型的参数量;在检测头加入NAM注意力模块,增强网络对细节信息的提取能力;采用SDIoU Loss作为边框回归损失,在加快收敛速度的同时提高了检测精度.实验表明:与YOLOv4-CSPDarknet53相比,改进算法在PASCAL VOC07+12数据集上训练出来的模型大小为47.19 M,约为原来的五分之一,FPS提升了40(f/s),mAP提升了2.4%.与YOLOv4-Tiny、YOLOv5s、YOLOv7等目标检测算法相比,具有兼顾检测速度与精度的特点.
Lightweight object detection method based on improved YOLOv4
An improved YOLOv4 object detection algorithm is designed to solve the problems of large number of detection model parameters and difficulty in deploying on embedded devices.A lightweight Mobilenetv1 was used to replace the CSPDarketnet53 backbone feature extraction network and a deeply separable convolution was used to replace the 3×3 convolution in the subsequent network,both aiming to drastically cut down on the number of participants.An attention module named NAM was added to the detection heads to enhance the network's ability to extract detailed information.SDIoU Loss was used as the bounding box regression loss function,which can accelerate the convergence speed and improve accuracy of the detection.Experiments show that compared with YOLOv4-CSPDarknet53,the model size trained by the improved algorithm on the PASCAL VOC07+12 dataset is 47.19 M,which is about one-fifth of the original,and the FPS is increased by 40(f/s)and the mAP is increased by 2.4%.Compared with other object detection algorithms such as YOLOv4 Tiny YOLOv5s and YOLOv7,it has the characteristics of taking into account the detection speed and accuracy.

loss functionYOLOv4attention mechanismsobject detectionlightweight network

苏盈盈、何亚平、喻骏、王晓峰、邓圆圆、罗妤

展开 >

重庆科技大学电气工程学院,重庆 401331

重庆科技大学大数据与数理学院,重庆 401331

损失函数 YOLOv4 注意力机制 目标检测 轻量化网络

重庆市自然科学基金重庆市自然科学基金重庆科技大学创新项目重庆科技大学创新项目

CSTB2022NSCQ-MSX1425cstc2019jcyjmsxmX0220YKJCX2220408YKJCX2220419

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(3)
  • 20