首页|基于DSGAN-OD模型的文物感知数据缺失值插补方法研究

基于DSGAN-OD模型的文物感知数据缺失值插补方法研究

扫码查看
高质量的文物感知数据对文物保护具有重要意义,然而,由于文物所处自然环境条件恶劣,感知数据中不可避免地存在缺失值,同时文物中同一类缺失数据具有样本少的特点.现有的缺失值处理方法没有充分考虑文物数据中的噪声干扰以及小样本数据间的时空关联性,导致缺失值插补的精确度较低.为此,提出了一种基于半监督生成对抗网络的缺失值插补模型(DSGAN-OD).该模型首先通过降噪自编码器(DAE)对多维数据进行降噪与降维预处理,然后针对生成对抗网络的无监督属性导致文物数据当中的分类标签信息不能被充分利用的不足,将DAE获得的低维表达向量作为半监督生成对抗网络(SemiGAN)的学习样本来获得缺失数据集的特征.同时,填充顺序决策(OD)方法根据数据间的时空关联性确定缺失值填充顺序,最后按照该顺序利用SemiGAN生成的完整数据对缺失值依次插补.在UCI标准数据集和文物温湿度数据上的实验结果表明:与现有的基于生成对抗网络的插补方法GAIN、随机森林插补法以及基于链式规则的多次插补法MICE相比,提出的缺失值插补模型DSGAN-OD的精确度分别提升了21%、48.2%及45.1%.
Missing value imputation method for cultural heritage sensing data based on the DSGAN-OD model
High-quality cultural heritage perception data is of great significance to cultural heritage conservation.However,due to the harsh natural environment conditions of cultural heritages,there are inevitably missing values in the data from sensing devices.And the missing data of the same category in cultural heritages have the characteristics of small sample.The existing missing values processing methods do not take into account the noise interference in cultural heritages data and the spatio-temporal correlation between small sample data,resulting in low accuracy of missing value interpolation.A missing value imputation model based on Semi-Supervised Generative Adversarial Networks(DSGAN-OD)is proposed.In this model,the multi-dimensional data are firstly de-noised and de-dimensional by DAE.Due to the unsupervised attribute of Generation Adversarial Networks,the classification label information in the cultural heritages data cannot be fully utilized.The low-dimensional expression vectors obtained by DAE were used as learning samples of semi-supervised generative adversarial networks(SemiGAN)to obtain features of missing datasets.Meanwhile,Order Decision(OD)method is used to determine the filling order of missing values according to the spatio-temporal correlation between data.Finally,the missing values are interpolated with the complete data generated by SemiGAN in this order.Experimental results on UCI standard dataset and cultural heritages temperature and humidity data show that compared with existing GAIN method,Random Forest method and MICE method,the accuracy of DSGAN-OD missing value interpolation model is improved by 21%,48.2%and 45.1%,respectively.

missing value imputationcultural heritages securityDSGAN-OD modelimputation order decision

袁小佩、朱容波、王俊、刘浩

展开 >

中南民族大学 计算机科学学院,武汉 430074

缺失值插补 文物安防 DSGAN-OD模型 填充顺序决策

国家重点研发计划

2020YFC1522600

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(4)
  • 21