首页|基于前景-背景特征交互的小样本语义分割

基于前景-背景特征交互的小样本语义分割

Few-shot semantic segmentation based on foreground-background feature interaction

扫码查看
建立支持图像和查询图像中目标对象的特征信息之间的联系是现有小样本语义分割的主流方法.然而这类方法大多没有通过挖掘背景信息辅助前景目标信息的预测,因此提出了一种前景与背景特征交互的小样本分割网络.具体来说,在传统的基于目标信息的双分支小样本分割网络中添加一条新分支用于显式地预测查询图像的背景区域,之后预测出的背景区域被用于修正预测出的前景目标区域.同时,在K-shot情景下,通过自适应调整单张支持图像在支持原型中的贡献比例缓解支持偏置.最后,在标准小样本分割数据集上进行了实验:在PASCAL-5i数据集1-shot设置下的测试结果mIoU分别比NTRENet和MMNet提高了0.4%和2.8%.
Establishing the relationship between the feature information of the target objects in the support image and the query image is the mainstream approach of existing few-shot semantic segmentation methods.However,most of these methods do not mine background information to assist the prediction of foreground target information.Therefore,a few-shot segmentation network that interacts with foreground and background features is proposed.Specifically,a new branch is added to the traditional two-branch few-shot segmentation network based on target information to explicitly predict the background region of the query image,and then the predicted background region is used to correct the predicted foreground target region.Meanwhile,in the K-shot scenario,the support bias is alleviated by adaptively adjusting the contribution proportion of a single support image in the support prototype.Finally,experiments are conducted on standard few-shot segmentation datasets.The results on the 1-shot setting of the PASCAL-5i dataset showed that the proposed method achieved 0.4%and 2.8%improvement in mIoU compared to NTRENet and MMNet,respectively.

few-shot learningsemantic segmentationno target region prediction

陆志明、陈少波

展开 >

中南民族大学 电子信息工程学院,武汉 430074

小样本学习 语义分割 非目标区域预测

中央高校基本科研业务费专项

CZY22012

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(4)
  • 16