首页|基于GhostNet的改进模型轻量化方法

基于GhostNet的改进模型轻量化方法

扫码查看
为了降低深度卷积神经网络的部署成本,优化模型的检测性能,提出一种改进的轻量化主干网络算法S-GhostNet.该算法通过引入特征图生成优化的Ghost Module结构降低卷积操作的计算量,并结合改进类残差模块提升模型的精确度.S-GhostNet具有较强的即插即用性,可以应用于多数卷积神经网络模型.实验结果表明:在目标分类以及目标检测任务中,S-GhostNet相较于MobileNetV2、ShuffleNetV2以及GhostNet,模型计算量更小,模型的精确度持平,甚至更高.
Improved model lightweighting method based on GhostNet
In order to reduce the deployment cost of deep convolutional neural networks and optimize the detection performance of the models,an improved lightweight backbone network algorithm S-GhostNet is proposed.The algorithm reduces the computational effort of convolutional operations by introducing a Ghost Module structure optimized for feature map generation.It improves the accuracy of the models by combining with an improved class of residual modules.S-GhostNet has a strong plug-and-play property and can be applied to most convolutional neural network models.Experimental results show that S-GhostNet is less computationally intensive than MobileNetV2,ShuffleNetV2 and GhostNet in target classification and target detection tasks.Also the accuracy of the model is similar or even higher.

object detectionGhostNetResidual Networkslightweight deployment

宋中山、周珊、艾勇、郑禄、肖博文

展开 >

中南民族大学计算机科学学院,武汉 430074

中南民族大学湖北省制造企业智能管理工程技术中心,武汉 430074

目标检测 GhostNet网络 残差网络 轻量化部署

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(5)