首页|基于Attention-DBNet算法的文本检测方法

基于Attention-DBNet算法的文本检测方法

Text detection method based on Attention-DBNet algorithm

扫码查看
针对复杂自然场景下文本检测信息缺失和漏检的问题,引入Attention机制,提出Attention-DBNet算法.在特征提取的FPNNet(Feature Pyramid Networks)结构中增加了Attention机制,用于增强主干网络的特征提取能力,使模型关注有用信息和抑制无用信息;在模型预测阶段提出一个新的二值化微分公式,使模型对每个像素分类更精准,模型训练的收敛速度加快.实验结果表明:在多个数据集上Attention-DBNet算法优于其它先进算法,召回率、准确率、调和平均、检测时间等指标均有10%以上的提升.
In response to the challenges of information loss and omission in text detection within complex natural scenes,the Attention mechanism is introduced and the Attention-DBNet algorithmis proposed.The Attention mechanism is incorporated into the FPNNet(Feature Pyramid Networks)architecture to enhance the feature extraction capabilities of the backbone network,enabling the model to focus on relevant information while suppressing irrelevant details.Additionally,a novel binarized differentiation formula is introduced during the model's prediction stage to achieve more accurate pixel-level classification and expedite model training convergence.Experimental results demonstrate the superiority of the Attention-DBNet algorithm over other state-of-the-art methods on multiple datasets,with recall,precision,F-measure,and detection time all exhibiting an improvement of over 10%.

text detectionattention mechanismDBNet algorithmdifferential formula

杨华、汪俊雄、沈浩、张书祥、冯立、肖杰

展开 >

武汉轻工大学 数学与计算机学院,武汉 430040

武汉佰钧成技术有限责任公司 武汉 434000

文本检测 注意力机制 DBNet算法 微分公式

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(5)