首页|基于人工神经网络的东亚电离层临界频率foF2长期变化趋势

基于人工神经网络的东亚电离层临界频率foF2长期变化趋势

扫码查看
利用人工神经网络对东亚中纬地区电离层台站观测的F2层临界频率foF2进行长期趋势研究.用F107、Ap、地方时(Local Time,LT)、月份(Month)作为输入神经元,分别表示太阳活动、地磁活动、日变化和季节变化;用foF2的月中值作为输出神经元,通过训练网络获取foF2预测值,对预测值和观测值进行计算和处理,得到东亚中纬地区foF2长期变化趋势.结果表明:人工神经网络的方法较常用的回归方法能更有效地消除地磁活动对foF2的影响;这些站点的foF2随着年份的增长存在明显的长期负趋势,无明显的日变化和统一季节变化性.这对于全球电离层结构和运动变化规律,全球电离层经验模型构建和同化以及电离层特征参数和结构预测具有重要意义.
Long-term variation trend of east asian ionospheric critical frequency foF2 based on artificial neural network
The trend of F2 layer critical frequency foF2 of ionospheric stations in East Asia mid-latitude is analyzed using artificial neural network method.F107,Ap,Local Time(LT),Month is used as input neurons to represent solar activity,geomagnetic activity,diurnal and seasonal changes respectively.The monthly median value of foF2 is used as output neuron,and the predicted value of foF2 is obtained by training the network.The predicted and observed values are processed and calculated to obtain the long-term variation trend of foF2 in East Asia mid-latitude.The results show that the artificial neural network method can more effectively eliminate the influence of geomagnetic activity on foF2 than the commonly used regression method.There is a clear long-term negative trend in the foF2 of these sites with the increase of the year.And there is no obvious diurnal variation and uniform seasonal variability.These are of great significance for the global ionospheric structure and movement change law,the construction and assimilation of the global ionospheric empirical model,and the ionospheric characteristic parameters and structure prediction.

artificial neural networksionosphereF2 layer critical frequencysolar and geomagnetic activity

朱正平、邓杰

展开 >

中南民族大学 电子信息工程学院,武汉 430074

人工神经网络 电离层 F2层临界频率 太阳和地磁活动

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(6)