首页|基于孪生互注意网络的阿尔兹海默症的诊断

基于孪生互注意网络的阿尔兹海默症的诊断

扫码查看
为提高纵向数据对阿尔兹海默症(Alzheimer's Disease,AD)分类的准确率,提出了一种孪生互注意网络通过双时间点的纵向数据对AD进行诊断.首先将两张不同时间的结构磁共振影像(sMRI)输入网络中,采用三维密集的连接网络(3D-Densenet)提取图像特征,并基于临床意义对距离第一次采集有24个月的图像(M24)的特征图通过自注意机制进行信息加强,然后建立互注意网络进行不同阶段的信息融合,将得到双时间特征产生的互相响应张量通过全连接部分进行分类.实验结果显示:孪生互注意网络提高了AD分类的准确率,这说明该网络可以有效结合不同时间阶段的疾病信息,增强了疾病特征的表达能力.
Diagnosis of Alzheimer's disease based on siamese cross-attention network
In order to improve the accuracy of longitudinal data in the classification of Alzheimer's Disease(AD),a siamese cross-attention network is proposed to diagnose AD through longitudinal data at two time points.Firstly,two structural magnetic resonance images(sMRI)at different times are input into the network,and the image features are extracted by using the 3D-Densenet network.Based on the clinical significance,the feature map of the image(M24)24 months from the first acquisition is enhanced by the self-attention mechanism,and then the cross-attention network is established for information fusion at different stages.The mutual response tensor generated by the dual time feature is classified by the full connection part.The experimental results show that the siamese cross-attention network improves the accuracy of AD classification,which shows that the network can effectively combine the disease information at different time stages and enhance the expression ability of disease characteristics.

longitudinal datasiamese networkAlzheimer's diseasecross-attentionself-attention

张美玲、刘汝璇、郑菲、唐奇伶

展开 >

中南民族大学 生物医学工程学院,武汉 430074

中南民族大学 认知科学国家民委重点实验室,武汉 430074

纵向数据 孪生网络 阿尔兹海默症 互注意 自注意

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(6)