首页|一类含有一般非线性项的p-Laplacian方程的基态解

一类含有一般非线性项的p-Laplacian方程的基态解

扫码查看
研究了一类非线性p-Laplacian方程:-Δpu+|u|p-2u=(Iα∗F(u))f(u),x ∈RN,其中p ∈[2,+∞),N>p,α ∈(0,N),F是f的原函数,Iα是Riesz位势.在一定的假设下,利用一般极小极大原理,构造了一个特殊的与Pohozaev恒等式相关的有界(PS)序列,证明了这一类p-Laplacian方程基态解的存在性.特别地,f所满足的条件被认为几乎是最优的.
Ground state solutions for a class of p-Laplacian equations with a general nonlinear term
The following class of nonlinear p-Laplacian equation is considered:-Δpu+|u|p-2u=(Iα∗F(u))f(u),x ∈RN,where p ∈[2,+∞),N>p,α ∈(0,N),F is the primitive function of f,Iα is the Riesz potential.Under certain assumptions,a special bounded(PS)sequence is constructed,which is related to the Pohozaev's identity by the general minimax principle,and the existence of ground state solutions is proved for this class of p-Laplacian equations.In particular,the conditions on f is considered to be almost optimal.

p-Laplacian equationsground state solutionscritical growth

何毅、郑海东

展开 >

中南民族大学 数学与统计学学院,武汉 430074

p-Laplacian方程 基态解 临界增长

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(6)