首页|论莱布尼茨微积分——康德"哥白尼革命"的前奏

论莱布尼茨微积分——康德"哥白尼革命"的前奏

扫码查看
莱布尼茨的微积分方法中的无穷小绝非仅仅因为符号的简便和实用性取得了所谓的"成功".从广延入手开创的位相分析法和分体论,不仅调和了几何和代数方法的基础上解决了当时的时代难题"不可公度性问题",也为其无穷小概念在确定了基于一门新的空间几何学的系统结构元素基础.其微积分方法更在将完全可以无关乎经验对象的理性概念及符号形式的具有确定性的数学推理的"元数学"还原到哲学认识论的理性批判,因此自带形式逻辑的演绎算术和符号表征的微积分方法最终指向的是康德认识论意义上的"哥白尼革命",深刻地影响了之后的思想史.
On Leibniz's Calculus:Prelude to Kant's"Copernican Revolution"
The infinitesimals in Leibniz's approach to calculus were not a so-called"success"merely because of the simplicity and practicality of the nota-tion.Starting from the extension,the pioneering method of situs analysis and the theory of mereology not only reconciled the geometrical and algebraic meth-ods on the basis of solving the"problem of incommensurability",which was a difficult problem of the time,but also defined the basis of its concept of infini-tesimals on the basis of the systematic structure of the elements of a new spatial geometry.Moreover,Leibniz's calculus approach reduces the"meta-math-ematics"of deterministic mathematical reasoning,which can be completely independent of the rational concepts and symbolic forms of empirical objects,to a rational critique of philosophical epistemology.Thus the deductive arithmetic with its formal logic and the calculus with its symbolic representations ulti-mately pointed to a"Copernican revolution"in the Sense of Kant's epistemology,which profoundly influenced the subsequent history of thought.

Leibnizcalculusmathematical methodsepistemological revolution

张璐、王一辰

展开 >

中国石油大学(华东)马克思主义学院,青岛 266580

莱布尼茨 微积分 数学方法 认识论革命

国家社会科学基金后期资助一般项目中国石油大学(华东)拓展基金资助

20FZXB02522CX04018B

2024

自然辩证法研究
中国自然辩证法研究会

自然辩证法研究

CSTPCDCSSCICHSSCD北大核心
影响因子:0.395
ISSN:1000-8934
年,卷(期):2024.40(9)