首页|基于地面约束和主成分分析特征提取的室内激光SLAM系统

基于地面约束和主成分分析特征提取的室内激光SLAM系统

扫码查看
针对室内同步定位和建图(SLAM)存在特征点稳定性不足及垂直方向误差累积的问题,提出了一种基于地面约束和主成分分析特征提取的室内激光SLAM系统.首先,通过主成分分析方法提取出代表性强、稳定性强的特征点,从而提高特征匹配和位姿优化的准确性;然后,在特征提取模块和建图模块分别检测地面,并将地面约束加入到位姿的计算中.实验结果表明:在各种室内环境中,相较于其他激光SLAM方法,在保证实时效率的同时,本文算法可有效地提高定位精度并减小垂直方向的误差.
An Indoor Lidar SLAM Based on Ground Constraint and Principal Component Analysis Based Feature Extraction
Aiming at the problem that the feature points extracted are not robust enough and the ac-cumulated vertical drift errors over long-term operation in current LiDAR SLAM,we propose an in-door LiDAR SLAM algorithm based on ground constraint and principal component analysis based fea-ture extraction.First,principal component analysis is applied to extract more discriminative and ro-bust features,which will improve the accuracy of feature association and pose optimization.Second,the ground is detected in the feature extraction module and the mapping module respectively and the ground constraint is added to estimate the pose.Experiments show that compared with other state-of-the-art method,the proposed algorithm can achieve better accuracy and reduce the vertical error without affecting the real-time performance in various indoor environments.

SLAMLiDARfeature extractionground segmentation

高震宇、王少虎、缪天缘、宋爱国

展开 >

东南大学仪器科学与工程学院,南京 210096

同步定位和建图 激光雷达 特征提取 地面分割

国防基础科研项目国家重点研发计划前沿科技创新重点专项广西电网有限责任公司科技项目南京市科技计划

JCKY2022110C0402021QY0902-001GXKJXM20220073202208018

2024

载人航天
中国载人航天工程办公室

载人航天

CSTPCD北大核心
影响因子:0.411
ISSN:1674-5825
年,卷(期):2024.30(2)
  • 25