首页|基于元启发式优化的机器人智能体无碰撞轨迹规划

基于元启发式优化的机器人智能体无碰撞轨迹规划

扫码查看
针对机器人智能体在复杂三维环境中的安全运动,提出一种基于元启发式优化的无碰撞轨迹规划方案.轨迹点采用五次样条插值,以确保运动轨迹足够平滑,且起始点和目标点的速度与加速度均为零.以轨迹长度最短为优化目标,将轨迹与障碍物的最近距离限制在约束条件中,从而表述为一个优化问题,并采用基于元启发式的灰狼算法进行求解.随后,在复杂的三维地形中对该方案开展2 个模拟仿真.结果表明:该方案能够有效地在规划空间内求解出预定数目的最优轨迹插值点,通过五次样条插值形成的轨迹长度达到最短,且不与障碍物发生任何碰撞.
Collision-free Trajectory Planning for Robotic Agents Based on Metaheuristic Optimization
To ensure the safe motion of robotic agents in complex three-dimensional(3-D)environ-ments,a collision-free trajectory planning scheme based on metaheuristic optimization was proposed.Trajectory nodes were interpolated using quintic splines to achieve sufficient smoothness of the mo-tion trajectory,with zero velocities and accelerations at both the starting and target points.The opti-mization objective was to minimize the trajectory length while constraining the minimum distance be-tween the trajectory and obstacles,formulating it as an optimization problem.This scheme was solved using the metaheuristic-based grey wolf optimizer.Subsequently,two simulations were con-ducted in complex 3-D terrains to evaluate the proposed scheme.The results demonstrated that this scheme effectively identified the predetermined number of optimal trajectory interpolation nodes with-in the planning space,with the trajectory length formed by quintic spline interpolation being mini-mized,and avoiding any collisions with obstacles.

robotic agenttrajectory planningcollision-freequintic spline interpolationgrey wolf optimizermetaheuristic

谢宗武、马博宇、孙万东、杨晓航、姬一明、谢光虎

展开 >

哈尔滨工业大学机器人技术与系统全国重点实验室,哈尔滨 150001

机器人智能体 轨迹规划 无碰撞 五次样条插值 灰狼算法 元启发式

国家自然科学基金

91848202

2024

载人航天
中国载人航天工程办公室

载人航天

CSTPCD北大核心
影响因子:0.411
ISSN:1674-5825
年,卷(期):2024.30(4)
  • 8