首页|探针电喷雾离子化质谱法结合人工智能建立肺腺癌术中良恶性快速诊断模型

探针电喷雾离子化质谱法结合人工智能建立肺腺癌术中良恶性快速诊断模型

扫码查看
目的:采用探针电喷雾离子化质谱技术对术中送检肺标本进行分析,结合人工智能技术建立一种快速良恶性诊断模型并对其进行评价.方法:收集中日友好医院病理科2022年7-12月送检的肺腺癌手术切除标本47例,以及周边非癌组织.经称量、提取、离心等处理,将上清液直接用快速原位离子化质谱仪DPiMS QT进行扫描分析.使用Anaconda软件自主研发程序进行数据读取、预处理、多变量分析、特征筛选、模型训练和优化.采用Metaboanalyst®对肺腺癌中发现的特征代谢物进行了代谢通路分析.结果:PLS regression方法降维分析结果,将199个特征降维成10个主成分用于区分癌与非癌组织.使用支持向量机(SVM)、随机森林(RF)和多层感知器(MLP)等10种算法进行建模后发现,基于MLP建立的分类模型的交叉验证准确率最好,判定的20重交叉验证准确率达99%±2%.代谢通路分析发现肺腺癌中谷氨酰胺下调、谷氨酸上调,其变化规律符合肺癌中通过谷氨酸-TCA循环促进蛋白质合成的规律.结论:应用探针电喷雾离子化质谱法结合人工智能技术可以在几分钟内将肺部良恶性病变区分开,实现肺组织新鲜标本的快速、准确分类,辅助肺组织的术中快速诊断.此外,肺腺癌中差异表达的物质还可以用于进一步的肿瘤代谢研究.
Establishment of a rapid differentiation model to distinguish malignancy from benignancy of intraop-erative lung adenocarcinoma tissues by probe electrospray ionization mass spectrometry combining with artificial intelligence
Objective:To develop and evaluate an intraoperative rapid diagnostic model for distinguishing ma-lignant lesions from benign ones by probe electrospray ionization mass spectrometry combining with artificial intelligence for unfixed lung surgical specimens.Methods:A total of 47 surgical specimens of lung adenocarci-noma and peripheral non-cancerous tissue were collected from Department of Pathology in China-Japan Friendship Hospital from July to December 2022.After weighing,extraction,centrifugation and other processing,the supernatant was directly scanned and analyzed using a rapid ambient mass spectrometer DPiMS QT.A self-developed program was adopted for data reading,preprocessing,multivariate analysis,feature screening,model training and optimization with Anaconda.Metaboanalyst® was used to analyze the metabolic pathway of characteristic metabolites found in lung adenocarcinoma.Results:Using the PLS regression method for di-mensionality reduction analysis,10 principal components were synthesized using 199 features for the determi-nation of malignant tumors and non-cancerous tissues.Ten models were developed with algorithms,such as support vector machine(SVM),random forest(RF)and multilayer perceptron(MLP),and it was found that the classification model based on MLP had the best accuracy for the 20-fold cross-validation(99%±2%).It was also found that glutamine was down-regulated and glutamic acid was up-regulated in lung adenocarcinoma,which was consistent with the regulation via TCA cycle in lung cancer,which would promote protein synthe-sis.Conclusion:Probe electrospray ionization mass spectrometry combined with artificial intelligence technology can be used to differentiate between benign and malignant lesions in the lungs within minutes,achieving rap-id and accurate classification of fresh lung tissue specimens and assisting in intraoperative rapid diagnosis of lung tissue.In addition,the differentially expressed substances found in lung adenocarcinoma can also be used for further tumor metabolism research.

probe electrospray ionization mass spectrometrylung neoplasmsadenocarcinomaartificial intelligence

赵玲玉、陈振贺、王也、冯倩倩、黄崎鑫、蒋丽超、董静、雷雅娟、李晓东、钟定荣

展开 >

中日友好医院病理科,北京 100029

中国医学科学院北京协和医学院研究生院,北京 100006

岛津中国创新中心,北京 100020

探针电喷雾离子化质谱法 肺肿瘤 腺癌 人工智能

中央高水平医院临床科研业务费资助

2022-NHL-HCRF-LX-01-0206

2024

中日友好医院学报
中日友好医院

中日友好医院学报

CSTPCD
影响因子:0.92
ISSN:1001-0025
年,卷(期):2024.38(4)