首页|基于CF-CNN-LSTM模型的滑坡易发性评价

基于CF-CNN-LSTM模型的滑坡易发性评价

扫码查看
针对滑坡灾害样本选择以及深度学习模型中的长期依赖、梯度消失、退化等问题,提出了一种结合确定性系数法(certainty factor,CF)、卷积神经网络(convolution neural network,CNN)模型和长短期记忆神经网络(long short-term memory,LSTM)模型的CF-CNN-LSTM深度学习模型.以广西壮族自治区梧州市辖区为研究区,选取高程、坡度和坡向等 13 种滑坡评价因子,采用CF-CNN-LSTM模型对研究区进行滑坡易发性评价,并与CNN模型、LSTM模型、循环神经网络模型和逻辑回归模型进行对比,利用受试者工作特征曲线(receiver operating characteristic,ROC)、整体准确率等 6 种方法对模型预测精度进行评估.结果表明:CF-CNN-LSTM模型的ROC曲线的曲线下面积(area under curve,AUC)值为 0.953,高于其它单一模型,同时其它 5 项评估指标均优于单一模型,证明CF-CNN-LSTM模型具有更高的精度,可用于梧州市辖区的滑坡易发性评价工作,能够对该区域的滑坡风险管理提供科学的建议.
Landslide susceptibility evaluation based on CF-CNN-LSTM model
To address the problems of landslide hazard sample selection as well as long-term dependencies,gradient vanishing,and degradation in deep learning models,a CF-CNN-LSTM deep learning model is proposed.This model combines the certainty factor(CF)method,convolution neural network(CNN),and long short-term memory(LSTM)networks.Taking the Wuzhou Municipal District of Zhuang Autonomous Region,Guangxi as the study area,13 kinds of landslide evaluation factors such as elevation,slope,slope direction,etc.were selected.The CF-CNN-LSTM model was used to evaluate the susceptibility of landslide in the study area,and compared with the CNN model,the LSTM model,the recurrent neural network model,the logistic regression model,and the prediction accuracy of the model were evaluated by six methods such as the working characteristic curve of the subjects and the overall accuracy.The results show that the AUC value of the ROC curve of the CF-CNN-LSTM model is 0.953,higher than that of other single models.At the same time,the other five assessment indexes are all better than that of the single model,which proves that the CF-CNN-LSTM model has a higher accuracy,and it can be used for landslide susceptibility evaluation in the Wuzhou City area,and it can provide scientific suggestions for landslide risk management in the region.

landslidesusceptibility evaluationcertainty factorconvolution neural networklong short-term memory

王守华、王睿菘、孙希延、刘小明、卢伟萍、林子安

展开 >

桂林电子科技大学 广西精密导航技术与应用重点实验室,广西 桂林 541004

桂林电子科技大学 信息与通信学院,广西 桂林 541004

卫星导航定位与位置服务国家地方联合工程研究中心,广西 桂林 541004

南宁桂电电子科技研究院有限公司,广西 南宁 530031

广西壮族自治区地质环境监测站,广西 梧州 543000

广西壮族自治区气象科学研究所,广西 南宁 530022

展开 >

滑坡 易发性评价 确定性系数 卷积神经网络 长短期记忆网络

广西精密导航技术与应用重点实验室基金项目广西科技厅项目国家自然科学基金项目国家自然科学基金项目桂林电子科技大学研究生教育创新计划项目桂林电子科技大学研究生教育创新计划项目

DH202301桂科AB2119604162061010621610072023YCXS0352024YCXS025

2024

自然灾害学报
中国地震局工程力学所 中国灾害防御协会

自然灾害学报

CSTPCD北大核心
影响因子:0.862
ISSN:1004-4574
年,卷(期):2024.33(5)
  • 15