首页|关于可测叶状结构空间上两种线性结构的刚性

关于可测叶状结构空间上两种线性结构的刚性

扫码查看
通过黎曼曲面的双曲长度函数与极值长度函数,将可测叶状结构空间实现为Teichmüller空间的余切空间,从而诱导了可测叶状结构空间上的两种线性结构.证明了这两种线性结构都具有刚性性质,也即不同的黎曼曲面诱导不同的线性结构.
Rigidity about two linear structures on the space of measured laminations
By modeling the space of projective measured laminations in the cotangent space to Tei-chmüller space via hyperbolic length functions and extremal length functions,we associate two classes of linear structures to the space of measured laminations. We prove that both of these two linear struc-tures are rigid:the induced linear structures on different Riemann surfaces are different.

Teichmüller spacemeasured laminationslinear structureshyperbolic lengthextremal length

江蔓蔓

展开 >

广州航海学院基础教学部,广东广州510725

Teichmüller空间 可测叶状结构 线性结构 双曲长度 极值长度

1177145611901130

2022

中山大学学报(自然科学版)(中英文)
中山大学

中山大学学报(自然科学版)(中英文)

CSTPCDCSCD北大核心
影响因子:0.608
ISSN:0529-6579
年,卷(期):2022.61(5)
  • 22