首页|Laplace方程上半平面边值问题中的动态采样

Laplace方程上半平面边值问题中的动态采样

扫码查看
针对Laplace方程上半平面边值问题,我们研究了利用ϕy*f的采样来恢复边值f.为了获得采样重构稳定性结果,Shannon采样定理表明采样率必需满足一定条件.在频带有限函数空间中针对采样率不足的情况,通过分析样本扩散矩阵的最小特征值,并利用Remez-Turan不等式避开盲点方法,解决了采样不等式稳定性问题.
Dynamical sampling in the boundary value problem of Laplace equation in upper half-plane
For the boundary value problem of Laplace equation in upper half plane,the sampling ofϕy∗f to recover the boundary value f is studied.In order to obtain the stability reconstruction of sam-pling,Shannon sampling theorem shows that the sampling rate must satisfy certain conditions.The sta-bility of sampling inequality is solved by analyzing the minimum eigenvalue of the sample diffusion matrix and using the Remez-Turan inequality to avoid the blind spot in the case of insufficient sampling rate in the bandlimited function space.

dynamic samplingbandlimited functionRemez-Turan inequalityLaplace equation

方黄、李松华、彭宏杰

展开 >

湖南理工学院数学学院, 湖南 岳阳 414006

动态采样 频带有限函数 Remez-Turan不等式 Laplace方程

湖南省自然科学基金湖南省教育厅重点项目

2020JJ433019A196

2024

中山大学学报(自然科学版)(中英文)
中山大学

中山大学学报(自然科学版)(中英文)

CSTPCD北大核心
影响因子:0.608
ISSN:0529-6579
年,卷(期):2024.63(1)
  • 17