首页|小麦叶绿素荧光参数叶位差异及其与植株氮含量的关系

小麦叶绿素荧光参数叶位差异及其与植株氮含量的关系

扫码查看
以中蛋白质含量小麦品种矮抗58和高蛋白质含量品种郑麦366为试验材料,2008-2010年连续2个生长季进行了施氮梯度下(0、90、180和270kg hm-2)的田间试验.在关键生育时期同步测定叶片荧光参数、叶和茎生物质量及氮含量,建立了基于叶位差的小麦植株氮含量荧光估算模型.结果表明,在小麦旺盛生长的拔节至孕穗期叶绿素荧光参数Fm、Fv、Fv/Fm和Fv/Fo与对应叶片氮含量的相关系数分别为0.557、0.601、0.619和0.633,均达极显著水平(P<0.01).顶三叶间荧光参数差异较小,随施氮水平提高,顶部第4叶荧光参数与顶三叶间差异逐渐缩小,说明其对增施氮肥反应敏感.顶部第4叶与顶部第1叶间的荧光参数差异(LPD4-1)可较好拟合小麦拔节期植株氮含量变化,Fv/Fo和Fv/Fm方程决定系数R2分别为0.644 (P<0.001)和0.651 (P<0.001);顶部第4叶与顶部第2叶间的荧光参数差异(LPD4-2)方程拟合决定系数有所降低,分别为0.626 (P<0.002)和0.592 (P<0.005);而顶部第4叶与顶三叶之间的差异(LPD4-n)与小麦孕穗期植株氮含量间呈显著线性关系,其Fo、Fv和Fm方程决定系数分别为0.726 (P<0.001)、0.791(P<0.001)和0.784 (P<0.001).独立数据检验结果表明,小麦拔节期对Fv/Fo和Fv/Fm的LPD4-1预测精度R2分别为0.844(P<0.001)和0.828 (P<0.001),相对误差(RE)分别为13.0%和16.7%,而LPD4-2估算植株氮含量精度有所降低,R2分别为0.793 (P<0.001)和0.813 (P<0.001),RE分别为16.9%和18.4%.小麦孕穗期对Fv和Fm的LPD4-n预测方程的R2分别为0.831 (P<0.001)和0.815 (P<0.001),RE分别为13.2%和16.4%.比较而言,小麦拔节期Fv/Fo的LPD4-1和孕穗期Fv的LPD4-n可更好地用于评估不同条件下植株氮含量的变化,为施肥调控提供决策依据.
Difference of Chlorophyll Fluorescence Parameters in Leaves at Different Positions and Its Relationship with Nitrogen Content in Winter Wheat Plant
For diagnosing nitrogen (N) nutrient status in winter wheat plant based on fluorescence parameters of leaves, two cultivars with Aikang 58 (mid-protein content) and Zhengmai 366 (high-protein content) were used in experiments with N application rates of 0, 90, 180, and 270 kg ha"1 in 2008-2009 and 2009-2010 growing seasons. The fluorescence parameters were measured in the first, second, third, and fourth leaves from the top of plant from jointing to maturity stage. The N contents and bio-masses of leaf and culm were determined through destructive sampling and chemical assay. The leaf N contents at different leaf positions were significantlycorrelated with fluorescence parameters from jointing to booting stage (P < 0.01). The correlation coefficients of N content with Fm, Fv, Fv/Fm, and Fv/Fo were 0.557, 0.601, 0.619, and 0.633, respectively. The fluorescence parameters of the top three leaves had small differences, which were much higher than those of the fourth leaf from the top. However, the differences reduced gradually with the increase of N application rate. This indicated a sensitive response of leaf position to N application. The differences of Fv/Fo and Fv/Fm between the fourth and the first leaves (LPD4-1) were significantly correlated with N content in plant (PNC) at jointing stage (R2 = 0.644 for Fv/Fo and R2 = 0.651 for Fv/Fm); whereas, the differences of Fv/Fo and Fv/Fm between the fourth and the second leaves (LPD4_2) had less accurate predictions with smaller R2 values (R2 = 0.626 for Fv/Fo and R2 = 0.592 for Fv/Fm). At booting stage, linear equations were obtained for Fo, Fv, and Fm differences (LPD4-n) between the fourth and the top three leaves (R2 = 0.726 for Fo, R2 = 0.791 for Fv, and R2 = 0.784 for Fm). Using independent datasets to predict PNC at jointing stage with the LPD4-1 and LPD4-2 equations based on Fv/Fo and Fv/Fm, the R2 values for LPD4-1 were 0.844 and 0.828 with relative errors of 13.0% and 16.7%, respectively; and the R2 values for LPD4-2 were 0.793 and 0.813 with relative errors of 16.9% and 18.4%, respectively. The result showed that the estimations were reliable. At booting stage, the best prediction of PNC was from the LPD4-n equation based on Fv and Fm, and R2 values were 0.831 and 0.815 with relative errors 13.2% and 16.4%, respectively. In conclusion, the LPD4-1 equation based on Fv/Fo at jointing stage and the LPD4-n model based on Fv at booting stage are applicable to estimate PNC of wheat.

Winter wheatNitrogen content in plantLeaf positionFluorescence parameters

冯伟、李晓、王永华、王晨阳、郭天财

展开 >

河南农业大学/国家小麦工程技术研究中心,河南郑州450002

冬小麦 植株氮含量 叶位 荧光参数

国家自然科学基金北方主要作物抗旱节水综合节水研究与区域示范专项

30900867200903007

2012

作物学报
中国作物学会 中国农业科学院作物科学研究所

作物学报

CSTPCDCSCD北大核心
影响因子:1.803
ISSN:0496-3490
年,卷(期):2012.38(4)
  • 25
  • 10