首页|融入法因层次结构的法因预测IHLCP模型

融入法因层次结构的法因预测IHLCP模型

扫码查看
该文针对当前法律智能体系可解释性差、低频易混淆法因预测效果不佳、民事纠纷研究过少的问题,设计了一种可解释性层次法因预测 IHLCP模型,并将法因之间的层次依赖关系作为模型可解释性的来源进行了研究.模型首先基于案件的语义差异性对事实描述进行编码,然后通过改进的 seq2seq-attention模块来预测法因路径,并利用法因内部的文本信息过滤事实描述中的噪声信息,以获得可靠的预测效果.该文设计的 IHLCP 模型在CIVIL、FSC和CAIL这三个大规模公开数据集上分别达到了当前最好的效果(CIVIL 数据集:ACC-91.0%,PRE-67.5%,RECALL-57.9%,F1-62.3%.FSC数据集:ACC-94.9%,PRE-78.8%,RECALL-75.9%,F1-77.3%.CAIL数据集:ACC-92.3%,PRE-90.9%,RECALL-89.7%,F1-90.3%),其中ACC和F1 值分别最高提升了 6.6%和 13.4%.实验结果表明,该设计能够帮助系统理解法因,弥补了当前法律智能体系在低频、易混淆法因预测上的不足,同时提升了模型的可解释性.
An Interpretable Hierarchical Legal Cause Prediction Model With Legal Cause Hierarchy
To address such issues as the poor interpretability of current legal intelligence system,the unsatisfactory prediction of less-frequent and confusing legal causes and the insufficient research on civil disputes,an interpretable hierarchical legal causes prediction model(IHLCP)is proposed,taking the hierarchical dependence between legal causes as the source of interpretability.In IHLCP,the fact description is encoded by capturing the semantic differ-ences of cases,and an improved attention-based seq2seq model is used to predict the cause path.Further,the inner text information of the cause is used to filter out the noise information in the fact description.Experiments show that the IHLCP model designed in this paper has achieved the state-of-art performance on three large-scale data sets:CIVIL(ACC-91.0%,Pre-67.5%,Recall-57.9%,F1-62.3%),FSC(ACC-94.9%,PRE-78.8%,RECALL-75.9%,F1-77.3%)and CAIL(ACC-92.3%,Pre-90.9%,Recall-89.7%,F1-90.3%),boosting the ACC and F1 by 6.6%and 13.4%,respectively.The experimental resuces show that this model can help the system to understand the law causes,make up for the start comings of current legal intelligence system in few-shot and confusing Causes of law prediction,make up for the deficiency of low frequency confusing cause prediction and improve the inter pretability of the model.

hierarchical legal cause predictioninterpretabilitysemantic differencesdata imbalancefew-shot prediction

黄思嘉、彭艳兵

展开 >

武汉邮电科学研究院,湖北 武汉 430074

南京烽火天地通信科技有限公司,江苏 南京 210019

层次法因预测 可解释性 语义差异性 数据不平衡 低频类别预测

2024

中文信息学报
中国中文信息学会,中国科学院软件研究所

中文信息学报

CSTPCDCHSSCD北大核心
影响因子:0.8
ISSN:1003-0077
年,卷(期):2024.38(1)
  • 26