首页|面向知识图谱问答的查询图生成方法

面向知识图谱问答的查询图生成方法

扫码查看
该文提出一种新的查询图生成方法用于知识图谱问答系统的问句解析.现有查询图生成工作覆盖的复杂问句类型有限,不能较好地处理答案为关系或涉及关系约束的问句,且未充分考虑路径结果间的组合与运算.因此,该文在查询图生成中应用节点操作的同时引入基于关系的操作,并考虑不同主路径之间的组合情况,显著提升对复杂问句的分析能力.并在此基础上,构建了中文知识图谱问答系统.此外,该文构建一份包含多种复杂类型问句的中文知识图谱问答数据集.该数据集和CCKS2019-CKBQA数据集合并后构成一个新的数据集CCKS2019-Comp,并用来测试本文方法的有效性.实验结果表明,该文方法在CCKS2019-CKBQA和CCKS2019-Comp测试集上平均F1值分别达到73.8%和73.3%.该文的新构建数据和代码已开源①.
A Query Graph Generation Method for Knowledge Base Question Answering
We propose a new query graph generation method for question parsing in knowledge base question answer-ing system.With a limited coverage of complex questions,existing query graph generation methods fail in handling questions whose answers or constrains are relations or the combination or operation between path results.We employ relation-based actions as well as node-based actions during query graph generation stage,and take the com-bination of different main paths into consideration.Based on this method,we build a Chinese knowledge base ques-tion answering system.We also build a dataset of Chinese knowledge base question answering with multiple complex questions,which is merged with CCKS2019-CKBQA as a new dataset called CCKS2019-Comp.The experimental results show that the proposed method achieves average F1 value of 73.8%and 73.3%on CCKS2019-CKBQA and CCKS2019-Comp,respectively.(data and code are available on GitHub1).

knowledge base question answeringquery graph generationdata constructionquestion answering system

谈川源、贾永辉、陈文亮、陈跃鹤

展开 >

苏州大学计算机科学与技术学院,江苏苏州 215006

知识图谱问答 查询图生成 数据构建 问答系统

国家自然科学基金江苏高校优势学科建设工程

61936010

2024

中文信息学报
中国中文信息学会,中国科学院软件研究所

中文信息学报

CSTPCDCHSSCD北大核心
影响因子:0.8
ISSN:1003-0077
年,卷(期):2024.38(5)
  • 6