首页|基于树形解码器的航空术语DEF自动生成

基于树形解码器的航空术语DEF自动生成

扫码查看
该文研究了基于HowNet的KDML语法体系的术语DEF自动生成问题,提出一种基于树形解码器的生成方法。在编码器端输入专业术语以及其他外部信息(术语的定义、术语子词的义原等);在解码器端交替使用义原解码器和关系解码器,同时使用注意力机制关注编码器端的各种表征信息,最终得到"义原-关系-义原"形式的输出,并组合成术语对应的义原树,进而得到术语的DEF表示以辅助专业领域HowNet的构建,最终取得了首义原F,值74。13%、总义原F1值53。92%、总关系F1值53。33%、总三元组F1值30。48%的结果。
DEF Generation for Terminologies Based on Tree-structured Decoder
This paper investigates the automatic generation of DEF based on KDML of HowNet,and proposes a gen-eration method based on tree-structured decoder.The inputs of the encoder are technical terms and other external in-formation(definition of the terms,sememes of sub-words of the terms,etc.).As for decoding,sememe decoder and role decoder are used alternately,and attention mechanism is used to capture various representation information.Finally,the output in the form of"sememe-role-sememe"is obtained,which is combined into the sememe tree cor-responding to terms to finalize the DEF representation of terms in HowNet.Experimental results show that the pro-posed method achieves 74.13%F1-value for the first sememe generation,53.92%for the overall sememe genera-tion,53.33%for the role generation and 30.48%for the overall triple generation.

HowNetDEF generationtree-structured decoder

吕嘉、王裴岩、蔡东风、张桂平、李林娜

展开 >

沈阳航空航天大学人机智能研究中心,辽宁沈阳 110136

知网 DEF生成 树形结构解码

国家自然科学基金辽宁省重点研发计划

U19082162019JH2/10100020

2024

中文信息学报
中国中文信息学会,中国科学院软件研究所

中文信息学报

CSTPCDCHSSCD北大核心
影响因子:0.8
ISSN:1003-0077
年,卷(期):2024.38(6)