首页|基于模态相似性路径的统一多模态实体对齐

基于模态相似性路径的统一多模态实体对齐

扫码查看
实体对齐(EA)的目标是从多个知识图谱(KG)中识别等价的实体对,并构建一个更全面、统一的知识图谱。大多数EA方法主要关注KG的结构模式,缺乏对多模态信息的探索。已有的一些多模态EA方法在这个领域做出了良好的尝试。但是,它们存在两个缺点:(1)针对不同模态信息采用复杂且不同的建模方式,导致模态建模不一致且建模低效;(2)由于EA中各模态间的异质性,模态融合效果往往不佳。为了解决这些挑战,该文提出了 PathFusion,使用模态相似性路径作为信息载体,有效地合并来自不同模态的信息。在真实世界的数据集上的实验结果显示,与最先进的方法相比,PathFusion在Hits@1上提高了 22。4%~28。9%,在MRR上提高了 0。194~0。245,验证了 PathFusion的优越性。
Universal Multi-modal Entity Alignment via Iteratively Fusing Modality Similarity Paths
The objective of Entity Alignment(EA)is to identify equivalent entity pairs from multiple Knowledge Graphs(KGs)and create a more comprehensive and unified KG.The majority of EA methods have primarily fo-cused on the structural modality of KGs,lacking exploration of multi-modal information.A few multi-modal EA methods have made good attempts in this field.Still,they have two shortcomings:(1)inconsistent and inefficient modality modeling that designs complex and distinct models for each modality;(2)ineffective modality fusion due to the heterogeneous nature of modalities in EA.To tackle these challenges,we propose PathFusion,which effec-tively combines information from different modalities using the path as an information carrier.Experimental results on real-world datasets demonstrate the superiority of PathFusion over state-of-the-art methods,with 22.4%~28.9%absolute improvement on Hits@1,and 0.194~0.245 absolute improvement on MRR.

entity alignmentknowledge graphsmulti-modal learning

朱柏霖、桂韬、张奇

展开 >

复旦大学计算机科学技术学院,上海 200443

实体对齐 知识图谱 多模态学习

2024

中文信息学报
中国中文信息学会,中国科学院软件研究所

中文信息学报

CSTPCDCHSSCD北大核心
影响因子:0.8
ISSN:1003-0077
年,卷(期):2024.38(6)