首页|基于深度神经网络的实体链接研究综述

基于深度神经网络的实体链接研究综述

扫码查看
实体链接旨在将文本中的实体指称映射到知识库中相应的实体,是知识图谱问答、智能推荐等下游任务的基础.近年来,深度神经网络和预训练语言模型的快速发展为实体链接方法研究提供了坚实基础,并取得了显著性能提升.该文对近期实体链接模型与方法进行了系统性的综述,主要从四个方面进行:第一,介绍实体链接的一般框架,包括候选实体生成、候选实体排序和不可链接指称预测;第二,分析低资源实体链接研究现状,包括跨语言迁移方法和跨领域迁移方法;第三,探讨面向特定领域的实体链接研究方法,重点介绍生物医学和社交媒体领域;第四,简述多模态实体链接相关成果.最后,该文分析了目前实体链接方法面临的技术挑战,并展望了未来的研究趋势.
A Survey on Entity Linking Based on Deep Neural Networks
Entity Linking(EL)aims to link mentions in text with their corresponding entities in knowledge base.In recent years,the rapid development of deep learning imporves the performance of entity linking.This paper system-atically reviews recent entity linking models and methods from the four aspects:① General framework including candidate entity generation,candidate entity ranking and unlinkable mention prediction.②Low-resource entity link-ing including cross-lingual and cross-domain transfer methods.③Domain specific entity linking with a focus on bio-medical and social media domains.④ Multimodal entity linking is described.Finally,the technical challenges faced by entity linking are analyzed and the future development is prospected.

entity linkingdeep learninglow-resourcedomain-specificsurvey

张玥、李韧、杨建喜、肖桥、谢江村、蒋仕新、王笛

展开 >

重庆交通大学信息科学与工程学院,重庆 400074

实体链接 深度学习 低资源 特定领域 综述

国家自然科学基金重庆市自然科学基金重庆市教委科学技术研究项目重庆交通大学研究生科研创新项目

62003063CSTB2023NSCQ-MSX0145KJZD-M2023007032022yjkc004

2024

中文信息学报
中国中文信息学会,中国科学院软件研究所

中文信息学报

CSTPCDCHSSCD北大核心
影响因子:0.8
ISSN:1003-0077
年,卷(期):2024.38(8)