首页|图注意力网络与句法融合的医疗实体识别

图注意力网络与句法融合的医疗实体识别

扫码查看
电子病历数据中包含大量的医疗实体词,对这些实体词的自动识别有益于提升计算机对电子病历数据的理解.待识别的医疗实体词通常由医疗专业术语和非规范医疗词汇构成,大量生僻词汇、长难词汇和病历行文中的省略现象给医疗实体识别任务带来了挑战.针对以上问题,该文提出一种图注意力网络与句法融合的医疗实体识别方法,该方法结合字词共现关系和句法依存关系,基于电子病历数据构建了交互式字词关系图和依存关系图,并利用图注意力网络完成多种图信息的融合.实验结果表明,在电子病历的命名实体识别中,该文方法得到88.91%的F1值,较基线模型提高1.04%,验证了该方法的有效性.
Incorporating Graph Attention Network and Syntax for Medical Entity Identification
The electronic medical record data contains a large number of medical entities,and the automatic recogni-tion of these entities is beneficial for improving the understanding of electronic medical records.The electronic medi-cal record data contains professional medical terms and a large number of non-standard medical vocabulary.Rare words,long difficult words and omission in medical records bring challenges to medical entity recognition.To solve this problem,this paper proposes a medical entity recognition method based on graph attention network and syntax fusion.This method combines the co-occurrence relationship between words and the rules of syntactic dependency,and it realizes the fusion of various graph information by graph-attention network based on the construction of inter-active character-word relationship graph and dependency relationship graph of electronic medical record data.The experiment result reveals that the proposed method achieves 88.91%F1 value,which is 1.04%higher than the baseline model.

electronic medical recordnamed entity recognitiongraph attention network

白宇、何佳蔚、张桂平

展开 >

沈阳航空航天大学人机智能研究中心,辽宁沈阳 110136

电子病历 命名实体识别 图注意力网络

辽宁省属本科高校基本科研业务费专项基金国家重点研究与发展计划资助项目国家自然科学基金

202406112018YFC1704301U1908216

2024

中文信息学报
中国中文信息学会,中国科学院软件研究所

中文信息学报

CSTPCDCHSSCD北大核心
影响因子:0.8
ISSN:1003-0077
年,卷(期):2024.38(9)
  • 1
  • 5