首页|基于改进蜘蛛猴算法的永磁同步电机参数辨识

基于改进蜘蛛猴算法的永磁同步电机参数辨识

扫码查看
[目的]针对元启发式算法在永磁同步电机(PMSM)参数辨识过程中易陷入局部最优的问题,提出一种基于Tent混沌映射和非线性动态自适应权重的改进蜘蛛猴优化(SMO)算法,实现了PMSM内部参数的准确辨识.[方法]通过在算法初始化阶段引入Tent混沌映射,增加了前期搜寻到最优解的概率.在局部领导者阶段引入动态自适应权重,根据当前迭代次数下种群适应度值来满足下一世代种群对于全局探索和局部寻优的需求.[结果]仿真结果显示,基于Tent混沌映射和非线性动态自适应权重的改进SMO在辨识过程中的收敛速度和辨识精度均有所提升,且误差控制在0.5%左右.[结论]本文提出的改进SMO具有更快的识别速度、更高的识别精度和良好的收敛特性.
Parameter Identification of PMSM Based on Improved Spider Monkey Optimization Algorithm
[Objective]To address the issue of metaheuristic algorithms being prone to falling into local optima during the parameter identification process of permanent magnet synchronous motor (PMSM),an improved Spider Monkey optimization (SMO) algorithm based on Tent chaotic mapping and nonlinear dynamic adaptive weights is proposed. This algorithm aims to achieve accurate identification of internal parameters of PMSM.[Methods]By introducing Tent chaotic mapping in the initialization phase of the algorithm,the probability of finding the optimal solution in the early stage was increased. In the local leader stage,dynamic adaptive weights were introduced based on the population's fitness values in the current iteration to meet the next generation population's needs for global exploration and local optimization.[Results]Simulation results showed that the improved SMO algorithm based on Tent chaotic mapping and nonlinear dynamic adaptive weights had improved convergence speed and identification accuracy during the identification process,with errors controlled within approximately 0.5%.[Conclusion]The proposed improved SMO algorithm exhibits faster identification speed,higher accuracy,and good convergence characteristics.

permanent magnet synchronous motorparameter identificationimproved Spider Monkey optimization algorithmTent chaotic mappingdynamic adaptive weights

郭成龙、张可畏、韩旭、丁庚鑫

展开 >

大连交通大学电气工程学院,辽宁大连 116028

大连交通大学机械工程学院,辽宁大连 116028

永磁同步电机 参数辨识 改进蜘蛛猴优化算法 Tent混沌映射 动态自适应权重

2024

电机与控制应用
上海电器科学研究所(集团)有限公司

电机与控制应用

CSTPCD
影响因子:0.411
ISSN:1673-6540
年,卷(期):2024.51(12)