首页|中国GDP增长率概率分布的预测分析——基于分位数因子模型

中国GDP增长率概率分布的预测分析——基于分位数因子模型

扫码查看
研究GDP增长率的概率分布,可以掌握经济增长的可能范围和经济发展趋势的不确定性,有助于决策者评估经济增长的风险和挑战,制定有效的经济政策.本文基于分位数因子模型(Quantile Factor Models,QFM),从高维宏观经济变量中提取分位数因子,拟合以分位数因子为条件的GDP增长率概率分布.实证结果表明:第一,分位数因子可为经济预测提供额外解释信息,提高模型的预测精度;第二,样本期间条件概率密度拟合结果表明QFM对GDP增长率的短期预测效果较好;第三,对比以分位数因子为条件和以实际GDP增长率为条件的两种概率分布,分位数因子为条件的分布在经济受到冲击时不确定性增大.本文对GDP增长率分布预测的研究与传统的均值预测相比,能提供比较全面和精确的经济预测信息,为经济不确定性和下行风险研究提供新思路,为经济波动机制的深入理解提供支持.
Forecast Analysis of Probability Distribution of China's GDP Growth Rate Based on Quantile Factor Models
This study delves into the probability distribution of GDP growth rate through the utilization of quantile factor models,which facilitate the evaluation of a broad spectrum of economic growth scenarios and uncertainties.By extracting quantile factors from macroeconomic variables,the models establish the probability distribution of GDP growth rate.The results indicate that the inclusion of quantile factors improves the ability of economic forecasts to explain outcomes and also enhances their accuracy.Furthermore,short-term forecasts,grounded in conditional probability density fitting,exhibit notably improved precision.Through an examination of the GDP growth rate probability distribution using quantile factor models,this study underscores the advantages of conditional probability density forecasts in offering more precise insights into economic volatility and downside risks when compared to conventional mean forecasts.These discoveries carry substantial implications for policymaking and contribute significantly to a deeper comprehension of the mechanisms underlying economic volatility and uncertainty.

GDP growth rateProbability densityForecastingQuantile factor models

肖强、曹红红

展开 >

兰州财经大学统计与数据科学学院

甘肃经济发展数量分析研究中心

GDP增长率 概率密度 预测 分位数因子模型

国家自然科学基金甘肃省重点研发计划甘肃省青年博士基金

7216301922YF7FA1672023QB-071

2024

中央财经大学学报
中央财经大学

中央财经大学学报

CSTPCDCSSCICHSSCD北大核心
影响因子:1.238
ISSN:1000-1549
年,卷(期):2024.(4)
  • 23