首页|基于Support Vector Machine和UPLC-QTOF-MS的人参生长年限数字化鉴定分析

基于Support Vector Machine和UPLC-QTOF-MS的人参生长年限数字化鉴定分析

扫码查看
目的:基于超高效液相色谱-四极杆飞行时间质谱法(UPLC-QTOF-MS)分析并经量化处理,结合支持向量机(SVM)进行数据建模,对人参生长年限进行数字化鉴定分析.方法:对 3、4、5、15 年生的人参样品进行UPLC-QTOF-MS分析,以混合质量控制样品为基准进行峰位校正、提取并经量化处理,获取反映化学成分信息的精确质量数-保留时间数据对(EMRT).结合SVM进行数据建模,同时在 5、10、20 折内部交叉验证的基础上,通过准确率(Acc)、精确率(P)、曲线下面积(AUC)等参数进行模型评价.基于所建数据模型进行人参生长年限的鉴定.结果:经量化处理后 80 批人参均获得 6556 个EMRT,结合SVM建立的数据模型具有优秀的辨识效果,Acc、P及AUC均大于 0.900 且外部鉴定验证正确率为 100%.结论:基于UPLC-QTOF-MS分析,并结合SVM算法能够高效准确地实现人参生长年限的数字化鉴定,可为中药材生长年限鉴定探索及中药质量控制提供参考.
Digital Identification of Ginseng Growth Years Based on Support Vector Machine and UPLC-QTOF-MS
Objective:To conduct digital identification and analysis of ginseng growth years based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-QTOF-MS)analysis combined with support vector machine(SVM)for data modeling.Methods:Ginseng samples aged 3,4,5,and 15 years were analyzed using UPLC-QTOF-MS.Peak correction,extraction,and quantization were performed using mixed quality control samples as a reference,obtaining exact mass-retention time(EMRT)data pairs that reflected chemical composition information.The data were then modeled using SVM.Model evaluation was carried out based on 5-fold,10-fold,and 20-fold internal cross-validation using parameters such as accuracy(Acc),precision(P),and area under the curve(AUC).The growth years of ginseng were identified based on the established data model.Results:After quantization,6556 EMRTs were obtained from 80 batches of ginseng.The data model built using SVM exhibited excellent identification performance,with Acc,P,and AUC all exceeding 0.900,and the external identification verification accuracy was 100%.Conclusion:UPLC-QTOF-MS analysis combined with the SVM algorithm can efficiently and accurately achieve digital identification of ginseng growth years,providing a reference for exploring the identification of the growth years of Chinese herbal medicines and contributing to their quality control.

ginsenggrowth yearsmachine learningsupport vector machinedigital IdentificationUPLC-QTOF-MS

王献瑞、郭晓晗、张宇、张佳婷、贺方良、荆文光、李明华、程显隆、魏锋

展开 >

中国食品药品检定研究院 中药民族药检定所,北京 102629

国家药品监督管理局 药品监管科学全国重点实验室,北京 102629

中国药科大学 中药学院,江苏 南京 211198

人参 生长年限 机器学习 支持向量机 数字化 超高效液相色谱-四极杆飞行时间质谱法

2024

中国现代中药
中国中药协会,中国医药集团总公司,中国药材公司

中国现代中药

CSTPCD
影响因子:0.65
ISSN:1673-4890
年,卷(期):2024.26(12)