首页|半环形外固定支架治疗C型桡骨远端骨折的稳定性有限元分析

半环形外固定支架治疗C型桡骨远端骨折的稳定性有限元分析

扫码查看
目的:探讨半环形外固定支架治疗C型桡骨远端骨折的稳定性。方法:选取1名健康成年男性志愿者,分别采用CT和MRI扫描腕关节。基于CT和MRI扫描数据,建立正常腕关节的三维有限元模型,并对模型有效性进行验证。基于正常腕关节的三维有限元模型,建立C1、C2、C3型桡骨远端骨折有限元模型,制作并装配半环形外固定支架。分别在装配半环形外固定支架的C1、C2、C3型桡骨远端骨折有限元模型上施加轴向、旋前及掌屈载荷,记录不同载荷下3种桡骨远端骨折有限元模型桡腕关节面的轴向最大相对位移及骨折块的最大应力和最大位移。结果:①正常腕关节有限元模型构建和验证结果。本研究建立的正常腕关节有限元模型涉及1 094 717个单元,387 763个节点。在尺骨近端施加完全约束后,对模型施加100 N的轴向载荷,桡腕关节面最大应力为10。7 MPa;桡骨远端关节面主要应力分布于桡舟关节面和桡月关节面,且桡舟关节面所承受的应力较大;该结果与文献中尸体实验结果一致,提示正常腕关节有限元模型构建成功。②3种桡骨远端骨折有限元模型桡腕关节面的轴向最大相对位移。在轴向载荷下,C1、C2、C3型桡骨远端骨折有限元模型桡腕关节面的轴向最大相对位移依次为0。27 mm、0。14 mm、0。64 mm;在旋前载荷下,C1、C2、C3型桡骨远端骨折有限元模型桡腕关节面的轴向最大相对位移依次为0。21 mm、0。29 mm、0。36 mm;在掌屈载荷下,C1、C2、C3型桡骨远端骨折有限元模型桡腕关节面的轴向最大相对位移依次为0。11 mm、0。08 mm、0。24 mm。③3种桡骨远端骨折有限元模型骨折块的最大应力。在轴向载荷下,C1、C2、C3型桡骨远端骨折有限元模型骨折块的最大应力依次为5。58 MPa、20。93 MPa、40。91 MPa;在旋前载荷下,C1、C2、C3型桡骨远端骨折有限元模型骨折块的最大应力依次为1。45 MPa、11。31 MPa、11。89 MPa;在掌屈载荷下,C1、C2、C3型桡骨远端骨折有限元模型骨折块的最大应力依次为0。78 MPa、19。94 MPa、4。66 MPa。④3种桡骨远端骨折有限元模型骨折块的最大位移。在轴向载荷下,C1、C2、C3型桡骨远端骨折有限元模型骨折块的最大位移依次为0。63 mm、1。4 mm、1。5 mm;在旋前载荷下,C1、C2、C3型桡骨远端骨折有限元模型骨折块的最大位移依次为0。10 mm、0。16 mm、0。16 mm;在掌屈载荷下,C1、C2、C3型桡骨远端骨折有限元模型骨折块的最大位移依次为1。24 mm、1。15 mm、1。05 mm。结论:半环形外固定支架治疗C型桡骨远端骨折具有较好的稳定性。
The stability of a semi-circular external fixator in treatment of type C distal radius fractures:a finite element analysis-based biomechanical study
Objective:To explore the stability of a semi-circular external fixator in treating type C distal radius fractures.Methods:A healthy adult male volunteer was selected for wrist joint scanning by using CT and MRI,respectively.Based on the CT and MRI scanning data,a three-dimensional(3D)finite element model of the normal wrist joint was established,and the validity of the model was verified.Based on the successfully established 3D finite element model,the finite element models of type C1,C2,and C3 distal radius fractures were established,and a semi-circular external fixator was fabricated and assembled.The axial,pronation and palmarflexion loads were applied to the finite element models of type C1,C2 and C3 distal radius fractures assembled with semi-circular external fixators,respectively.The max-imum relative axial displacement of the radiocarpal articular surface,and the maximum stress and maximum displacement of the fractured bone in the three finite element models under the different loads were recorded.Results:①The established 3D finite element model of nor-mal wrist joint involved 1 094 717 elements and 387 763 nodes.The maximum stress was 10.7 MPa on the radiocarpal articular surface when a 100 N axial load was applied to the model after applying a full constraint to the proximal end of the ulna.The main stress acted on the distal radius articular surface was mainly distributed on the radionavicular and radiolunate articular surfaces,with the radionavicular ar-ticular surface experiencing greater stress.This result was consistent with the results previously reported in the cadaver experiments,indica-ting the successful establishment of a 3D finite element model of normal wrist joint.②The maximum relative axial displacements of the ra-diocarpal articular surface in the finite element models of type C1,C2,and C3 distal radius fractures were 0.27,0.14,and 0.64 mm under the axial load;0.21,0.29,and 0.36 mm under the pronation load;and 0.11,0.08,and 0.24 mm under the palmarflexion load,respective-ly.③The maximum stress of the fractured bone in the finite element models of type C1,C2,and C3 distal radius fractures were 5.58,20.93,and 40.91 MPa under the axial load;1.45,11.31,and 11.89 MPa under the pronation load;and 0.78,19.94,and 4.66 MPa under the palmarflexion load,respectively.④The maximum displacement of the fractured bone in the finite element models of type C1,C2,and C3 distal radius fractures were 0.63,1.4,and 1.5 mm under the axial load;0.10,0.16,and 0.16 mm under the pronation load;and 1.24,1.15,and 1.05 mm under the palmarflexion load,respectively.Conclusion:The semi-circular external fixator behaves good stability in the treatment of type C distal radius fractures.

radius fracturesfracture fixationexternal fixatorsfinite element analysisbiomechanical phenomena

王文、蒋科卫、成永忠、林晴、尹晓冬、钱秀清、刘广伟

展开 >

北京中医药大学研究生院,北京 100029

中国中医科学院望京医院,北京 100102

首都医科大学生物医学工程学院,北京 100069

中医正骨技术北京市重点实验室,北京 100102

展开 >

桡骨骨折 骨折固定术 外固定器 限定因素分析 生物力学现象

首都临床特色诊疗技术研究及转化应用项目国家自然科学基金项目中国中医科学院科技创新工程项目

Z22110000742207582274561CI2021A02008

2024

中医正骨
河南省正骨研究院

中医正骨

CSTPCD
影响因子:1.912
ISSN:1001-6015
年,卷(期):2024.36(6)
  • 30