铸造2024,Vol.73Issue(9) :1329-1335.

铸造工艺数据驱动的工程机械铸件缺陷预测

Casting Process Data-Driven Defect Prediction for Construction Machinery Castings

刘迎辉 余朋 潘徐政 朱守琴 计效园 吴来发 殷亚军 沈旭 解明国 周建新
铸造2024,Vol.73Issue(9) :1329-1335.

铸造工艺数据驱动的工程机械铸件缺陷预测

Casting Process Data-Driven Defect Prediction for Construction Machinery Castings

刘迎辉 1余朋 1潘徐政 1朱守琴 2计效园 1吴来发 2殷亚军 1沈旭 1解明国 2周建新1
扫码查看

作者信息

  • 1. 华中科技大学材料成形与模具技术全国重点实验室,湖北武汉 430074
  • 2. 安徽合力股份有限公司合肥铸锻厂,安徽合肥 230022
  • 折叠

摘要

针对砂型铸造过程缺陷难以寻因、工艺数据类别不平衡问题,提出了一种基于特征重分布与代价敏感学习的卷积神经网络缺陷预测方法.首先,根据样本特征相关性,对特征向量排列顺序进行了优化;其次,基于不平衡工艺数据样本设计了代价敏感正则项,对模型损失函数进行了修正;最后,构建了缺陷预测模型(FR-CS-CNN).测试结果表明,本研究构建的FR-CS-CNN在总体预测精度上达到了93.67%,相比卷积神经网络提升了2.96%.

Abstract

Directing at the problems of difficult to find defect cause,and category imbalance of technical data during sand casting process,a convolutional neural network defect prediction method based on feature redistribution and cost sensitive learning was proposed to solve the defects in sand casting process.Firstly,according to the feature correlation of samples,the sequence of feature vectors is optimized.Secondly,the cost sensitive regular term is designed based on the unbalanced process data sample,and the model loss function is modified.Finally,a defect prediction model(FR-CS-CNN)is constructed.The test results show that the overall prediction accuracy of FR-CS-CNN constructed in this study reaches 93.67%,which is 2.96%higher than that of convolutional neural network.

关键词

砂型铸造/缺陷预测/代价敏感学习/卷积神经网络

Key words

sand casting/defect prediction/cost-sensitive learning/convolutional neural networks

引用本文复制引用

基金项目

国家重点研发计划项目(2020YFB1710100)

国家自然科学基金(52275337)

国家自然科学基金(52090042)

国家自然科学基金(51905188)

出版年

2024
铸造
沈阳铸造研究所 中国机械工程学会铸造分会

铸造

CSTPCD
影响因子:0.499
ISSN:1001-4977
段落导航相关论文