首页|数据驱动选区激光熔化成形性能优化与智能工艺研究进展

数据驱动选区激光熔化成形性能优化与智能工艺研究进展

扫码查看
选区激光熔化(SLM)是一种革命性的金属增材制造技术,传统方法难以实现SLM零件多项性能目标协同优化和智能化工艺推荐。为此本文报道了新兴的数据驱动方法在SLM成形性能优化及成形机理探索方面进展。首先,阐明了数据驱动已成为促进SLM成形高性能零件的趋势选择;其次,报道了SLM成形单性能和多性能目标优化,总结了存在挑战并指出优化方向,并提出了一套通用的数据驱动SLM智能工艺推荐系统研究框架、构建方案和多维评价准则;再次,综述了数据驱动SLM成形机理并阐明了其发展方向;最后,探讨了数据驱动SLM目前存在的问题及发展趋势。通过对成形性能优化与成形机理进行总结,旨在促进增材制造工艺优化迈向智能化,促进SLM成形构件高质量,高综合性能发展。
Research Progress on Data-Driven Selective Laser Melting Forming Performance Optimization and Intelligent Process Recommendation System
Selective laser melting(SLM)is a revolutionary metal additive manufacturing technology,and traditional methods make it extremely hard to achieve coordinated optimization of multiple performance items and intelligent process recommendations for SLM parts.This paper reports the progress of emerging data-driven methods in optimizing SLM forming performance and exploring forming mechanisms.Firstly,it is clarified that the data-driven approach has become a trend choice for promoting the SLM forming of high-performance parts;Secondly,the optimizations of single-performance and multi-performance objectives for SLM parts are reported,and the existing challenges are summarized and optimization directions are pointed out.A universal data-driven SLM intelligent process parameter recommendation system research framework,construction procedure,and multi-dimensional evaluation criteria are proposed;Once again,the data-driven SLM forming mechanism is summarized and the development direction is elucidated.Finally,the current challenges and development trends of data-driven SLM are discussed.By summarizing the optimization of forming performance and forming mechanism,the aim is to promote the intelligent development of additive manufacturing process optimization,and the high-quality and high-performance combinations development of SLM formed components.

data-drivenadditive manufacturingselective laser meltingperformance predictionprocess parameter recommendationforming mechanism

涂先猛、彭东剑、陈威、计效园、陈嘉龙、王泽明、杨欢庆、周建新

展开 >

华中科技大学材料成形与模具技术全国重点实验室,湖北武汉 430074

西安航天发动机有限公司,陕西西安 710100

中国核动力研究设计院,四川成都 610005

数据驱动 增材制造 选区激光熔化 性能预测 工艺参数推荐 成形机理

2024

铸造
沈阳铸造研究所 中国机械工程学会铸造分会

铸造

CSTPCD
影响因子:0.499
ISSN:1001-4977
年,卷(期):2024.73(11)