首页|基于距离阈值的自适应K-均值聚类算法

基于距离阈值的自适应K-均值聚类算法

扫码查看
为快速有效地确定聚类中心,提出一种基于距离阈值的自适应K-均值聚类算法。首先确定合理的距离阈值,其次根据距离阈值确定初始聚类中心位置及个数,最后对位置相近的聚类中心簇进行合并,获得新的聚类中心位置及个数。结果表明,该方法可以自动确定k值及中心位置,有效避免将离群点错误聚类,从而改善了聚类效果。
An Adaptive K-means Clustering Method Based on Distance Threshold
An adaptive K-means clustering approach based on distance threshold was proposed to get a proper clustering result. Firstly, a reasonable distance threshold was obtained from a given dataset. Then the initial clustering centers were set based on the distance threshold. Clusters with centers close to each other were merged to a new clustering center. Experimental results proved that the suitable value of k and clustering centers could be found with the proposed method, and outliers could effectively be avoided be-ing clustered incorrectly,thus the cluster effect was improved.

K-meansdistance thresholdclustering center

曾庆山、张贵勇

展开 >

郑州大学 电气工程学院 河南 郑州450001

K-均值 距离阈值 聚类中心

河南省教育厅科学技术研究重点项目

14A120003

2016

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2016.48(4)
  • 4
  • 10