首页|融合深度强化学习与算子优化的流式任务调度

融合深度强化学习与算子优化的流式任务调度

扫码查看
针对实时性要求高和作业量大的流处理作业执行过程中,多个作业之间存在的相同处理片段可能会导致流处理引擎重复计算、资源浪费和处理性能低下的问题,提出了融合深度强化学习与算子优化的流式任务调度方法.首先利用算子优化算法将多个复杂的作业去重、重构,其次将重构得到的作业输入循环神经网络中得到任务的调度策略,最后利用强化学习模型进行调度策略的优化.所提方法利用算子优化减少了每个作业中创建的算子实例,结合深度强化学习自动发现最优的调度策略,有效地避免了因大量实例运行而造成的系统资源不足、数据拥塞等问题.对比实验结果表明,所提方法在吞吐量和延迟方面的表现更优异.
Stream Processing Task Scheduling Integrating Deep Reinforcement Learning and Operator Optimization
Aiming at the problems of high real-time requirements and large workload during the execution of stream processing jobs,the same processing fragments among multiple jobs might lead to repeated cal-culations of stream processing engines,waste of resources,and low processing performance,a scheduling method for stream processing tasks that integrated deep reinforcement learning and operator optimization was proposed.Firstly,the operator optimization algorithm was used to deduplicate and reconstruct multi-ple complex tasks.Secondly,the reconstructed tasks were input into a recurrent neural network to obtain the scheduling strategy for the tasks.Finally,the scheduling strategy was further optimized using a rein-forcement learning model.The proposed method reduced the number of operator instances created in each task through operator optimization.By combining deep reinforcement learning,the method automatically discovered the optimal scheduling strategy,effectively avoiding issues such as insufficient system re-sources and data congestion caused by a large number of instances running.The comparative experimen-tal results showed that the proposed method performed better in terms of throughput and latency.

stream processing jobtask schedulingoperator optimizationdeep reinforcement learning

郭陈虹、王菁、巩会龙、郭浩浩、张睿轩

展开 >

北方工业大学信息学院 北京 100144

大规模流数据集成与分析技术北京市重点实验室(北方工业大学) 北京 100144

流处理作业 任务调度 算子优化 深度强化学习

2025

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2025.57(1)