首页|基于Vision Transformer的车辆重识别模型优化

基于Vision Transformer的车辆重识别模型优化

扫码查看
针对车辆重识别任务中样本类内差异性大和类间相似度高的问题,提出了一种Vision Transformer框架下的车辆重识别方法.设计一种关键区域选择模块,整合Transformer中注意力分数矩阵,加强车辆的具有辨别性区域的关注程度,减小局部区域过度集中的注意力权重;构建一种包含对比损失和中心损失的混合损失函数,对比损失函数的引入增强了模型捕捉和比较样本之间的差异的能力,中心损失使得同一类别的样本更加紧密地聚集在一起,增强类间样本的区分度.实验结果验证了其有效性.
Optimization of Vehicle Re-identification Model Based on Vision Transformer
A vehicle re-identification method based on the Vision Transformer framework was proposed to address the challenges of large intra-class variations and high inter-class similarities in vehicle re-identifi-cation tasks.A key region selection module was designed to integrate attention score matrices from Trans-formers,enhancing the focus on discriminative regions of vehicles and reducing the excessive attention weights on local regions.A hybrid loss function was constructed,incorporating contrastive loss and center loss.The introduction of contrastive loss enhanced the model's ability to capture and compare differences between samples,while center loss promoted tighter clustering of samples within the same category,thus improving inter-class sample discrimination.Experimental results validated the effectiveness of the pro-posed method.

vehicle re-identificationself-attention mechanismattention weightregion selection

张震、张亚斌、田鸿朋

展开 >

郑州大学电气与信息工程学院 河南郑州 450001

车辆重识别 自注意力机制 注意力权重 区域选择

2025

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2025.57(1)