首页|基于无监督深度领域对抗适配的在线剩余寿命预测方法

基于无监督深度领域对抗适配的在线剩余寿命预测方法

扫码查看
为解决未知工况下旋转设备在线剩余寿命(remaining useful life,RUL)预测时计算代价大和误差累积问题,提出一种基于无监督深度领域对抗适配的在线RUL预测方法.首先,利用离线退化数据和在线早期故障数据,构建深度领域对抗网络作为预训练模型.其次,将在线贯序数据块输入预训练模型的回归预测器中重新领域适配,得到在线伪标签.最后,将预训练模型的结构和参数迁移到目标域模型,冻结目标域模型的部分参数,并利用在线数据块和伪标签对目标域模型剩余参数进行微调,实现在线数据的RUL动态预测.在IEEE PHM Challenge 2012轴承数据集上进行实验,结果表明,所提方法可以贯序、准确地预测在线轴承RUL值,为在线场景下的轴承RUL预测提供了一种实用化的解决方案.
Online Remaining Useful Life Prediction Method Based on Unsupervised Deep Domain-adversarial Adaptation
To solve the problems of high computational cost and error accumulation in the field of online remaining useful life (RUL) prediction of rotating machinery with unknown working conditions,a new online RUL prediction method was proposed based on unsupervised deep domain-adversarial adaptation.Firstly,by employing offline degradation data and online early fault data,a deep domain-adversarial net-work was constructed as a pre-trained model.Secondly,the pseudo-labels of online sequential data blocks were obtained by feeding them into the regression predictor of the pre-trained model that was re-domain adaptation.Finally,the structure and parameters of the pre-trained model were transferred to a target model,and by freezing some parameters of the target model,the remaining parameters were fine-tuned with the online data block and its pseudo-labels to achieve the online RUL prediction.Experimen-tal results on the IEEE PHM Challenge 2012 bearing dataset demonstrated that the proposed method could sequentially and accurately predict the RUL values of online bearing,which provided a practical solution for bearing RUL prediction in online scenarios.

remaining useful life predictiontransfer learningdomain adaptationunsupervised learningonline learning

刘可盈、张艳娜、毛文涛、王纳

展开 >

河南师范大学计算机与信息工程学院 河南新乡 453007

智慧商务与物联网技术河南省工程实验室 河南新乡 453007

剩余寿命预测 迁移学习 领域适配 无监督学习 在线学习

2025

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2025.57(1)