首页|基于二维离散傅里叶变换的恶意代码检测

基于二维离散傅里叶变换的恶意代码检测

扫码查看
恶意代码数量越来越庞大,恶意代码分类检测技术也面临着越来越大的挑战.针对这个问题,一种新的恶意代码分类检测框架MGFG(malware gray image Fourier transform gist)模型被提出,其将恶意代码可执行(portable exe-cutable,PE)文件转换为灰度图像,应用二维离散傅里叶变换对恶意代码的灰度图像进行处理,得到其频谱图.通过对频谱图频率的处理,达到恶意代码图像去噪的效果.最后,提取全局特征(gist)并实现恶意代码的检测与分类.实验结果表明,在多个数据集上,MGFG模型对于加壳的、采用了混淆技术的恶意代码分类问题都具有更好的鲁棒性和更高的分类准确率.
Malware Detection Based on Two-dimensional Discrete Fourier Transform
The number of malware increased rapidly,and malware classification and detection techniques were facing serious challenges. To address this issue,a new malware classification and detection frame-work,MGFG (malware gray image Fourier transform gist) model was proposed. The malware PE files were converted into gray images,and then the two-dimensional discrete Fourier transform was applied to the gray images of malware to obtain their spectrograms. By processing the spectrogram frequencies,the effect of malware image denoising was achieved. Finally,the global features (gist) were extracted to de-tect and classify malware. The experimental results showed that the MGFG model had better robustness and higher classification accuracy on multiple datasets for the classification problem of shelled,obfuscated malware.

malwaregray imageFourier transformgist

刘亚姝、邱晓华、孙世淼、赵潇逸、严寒冰

展开 >

北京建筑大学电气与信息工程学院 北京 100044

国家计算机网络应急技术处理协调中心 北京 100029

恶意代码 灰度图像 傅里叶变换 gist

2025

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2025.57(2)