首页|FFConvNeXt3D:提取中大规模目标特征的大卷积核网络

FFConvNeXt3D:提取中大规模目标特征的大卷积核网络

扫码查看
目前大卷积核模型在图像领域已经证明其有效性,但是在视频领域还没有优秀的3D大卷积核模型.此外,之前的工作中忽视了时空行为检测任务主体是人的特点,其中的骨干网络只针对通用目标提取特征.针对上述原因,提出了一种含有特征融合结构的3D大卷积核神经网络(FFConvNeXt3D).首先,将成熟的ConvNeXt网络膨胀成用于视频领域的ConvNeXt3D网络,其中,预训练权重也进行处理用于膨胀后的网络.其次,研究了卷积核时间维度大小和位置对模型性能的影响.最后,提出了一个特征融合结构,着重提高骨干网络提取人物大小目标特征的能力.在UCF101-24数据集上进行了消融实验和对比实验,实验结果验证了特征融合结构的有效性,并且该模型性能优于其他方法.
FFConvNeXt3D:Large Convolutional Kernel Network for Extracting Target Features of Medium and Large Size
Large convolutional kernel models was proven effective in the image domain,but the available 3D large convolutional kernel models were not good enough in the video domain. Additionally,the back-bone network only could extract features for generic targets,and human was ignored as the subject in the spatio-temporal action detection task in previous work. To address these issues,a 3D large convolutional kernel neural network containing a feature fusion structure (FFConvNeXt3D) was proposed. Firstly,the mature ConvNeXt network into a ConvNeXt3D network was extended to the video domain,where pre-training weights were also processed for the expanded network. Secondly,the effect of the size and posi-tion of the temporal dimension of the convolutional kernel on the performance of the model was investiga-ted. Finally,a feature fusion structure that would focus on improving the ability of the backbone network to extract features from targets of medium or larger size such as humans was proposed. The ablation ex-periments and comparison experiments were conducted on the UCF101-24 dataset. The experimental re-sults verified the effectiveness of the feature fusion structure,and the model performed better than other methods.

large convolution kernelobject detectionspatio temporal action detectionaction recognitionfeature fusion

黄乾坤、黄蔚、凌兴宏

展开 >

苏州大学计算机科学与技术学院 江苏苏州 215006

苏州大学东吴学院计算机系 江苏苏州 215006

苏州城市学院计算科学与人工智能学院 江苏苏州 215104

吉林大学符号计算与知识工程教育部重点实验室 吉林长春 130012

展开 >

大卷积核 目标检测 时空行为检测 行为识别 特征融合

2025

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2025.57(2)