首页|一种基于知识蒸馏的边缘联邦学习算法

一种基于知识蒸馏的边缘联邦学习算法

扫码查看
针对边缘计算环境中参与联邦学习的客户端数据资源的有限性,同时局限于使用硬标签知识训练模型的边缘联邦学习算法难以进一步提高模型精度的问题,提出了基于知识蒸馏的边缘联邦学习算法.利用知识蒸馏对软标签信息的提取能够有效提升模型性能的特点,将知识蒸馏技术引入联邦学习的模型训练中.在每一轮的联邦学习模型训练过程中,客户端将模型参数和样本逻辑值一起上传到边缘服务器,服务器端聚合生成全局模型和全局软标签,并一起发送给客户端进行下一轮的学习,使得客户端在进行本地训练时也能够得到全局软标签知识的指导.同时在模型训练中对利用软标签知识和硬标签知识的占比设计了动态调整机制,使得在联邦学习中能够较为合理地利用两者的知识指导模型训练,实验结果验证了提出的基于知识蒸馏的边缘联邦学习算法能够有效地提升模型的精度.
An Edge Federated Learning Algorithm Based on Knowledge Distillation
In view of the clients' limited data resources involved in federated learning in edge computing environment,and the problem that it was difficult to further improve the accuracy of edge federated learn-ing algorithm which used hard label knowledge to train the model,an edge federated learning algorithm based on knowledge distillation was proposed. The extraction of soft label information by knowledge distil-lation could effectively improve the performance of the model,so the knowledge distillation technology was introduced into the model training of federated learning. In each round of federated learning model training process,the client uploaded the model parameters and samples logic values to the edge server,and the server generated the global model and global soft label together and sent them to the client for the next round of learning,so that the client could also get the guidance of global soft label knowledge during local training. At the same time,a dynamic adjustment mechanism was designed for the proportion of soft label knowledge and hard label knowledge in model training,so that the knowledge of both could be rea-sonably used to guide model training in federated learning. The experimental results verified that the pro-posed edge federated learning algorithm based on knowledge distillation could effectively improve the accuracy of the model.

edge computingknowledge distillationclientsoft labelhard label

石玲、何常乐、常宝方、王亚丽、袁培燕

展开 >

河南师范大学 计算机与信息工程学院 河南新乡 453007

智慧商务与物联网技术河南省工程实验室 河南新乡 453007

边缘计算 知识蒸馏 客户端 软标签 硬标签

2025

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2025.57(2)