首页|基于知识图谱增强的恶意代码分类方法

基于知识图谱增强的恶意代码分类方法

扫码查看
针对应用程序接口(application programming interface,API)序列识别的恶意代码分类方法存在特征描述能力弱和调用关系缺失的问题,提出一种基于知识图谱增强的恶意代码分类方法.首先,基于函数调用图抽取恶意代码所含的API实体及其调用关系,在此基础上构建恶意代码API知识图谱.其次,使用Word2Vec技术计算携带上下文调用语义的API序列向量,借助TransE技术捕获API知识图谱中的API实体向量,将这两个向量的融合结果作为API特征.最后,将恶意代码所含的API表示为特征矩阵,输入TextCNN进行分类模型训练.在恶意代码家族分类任务中,与基线模型相比,所提方法的准确率有较大提升,达到93.8%,表明知识图谱可以有效增强恶意代码家族分类效果.同时,通过可解释性实验证实了所提方法具有应用价值.
Malware Classification Method Based on Knowledge Graph Enhancement
Aiming at the weak feature description ability and the lack of call relations in malware classifi-cation methods with application programming interface(API) sequences,a malware classification method based on knowledge graph enhancement was proposed. Firstly,on the basis of a function call graph,an API entity and its call relations contained in malware were extracted so as to construct an API knowledge graph for malware. Secondly,the Word2Vec technology was used to get an API sequence vector that was blended with context semantics,and the TransE technology was used to learn an API entity vector in the knowledge graph,then the blending result of the two vectors was used as the API feature. Finally,with the feature matrix that contained API,the classification model was trained on TextCNN. In the task of malware family classification,compared with the baseline models,the proposed method had a significant improvement in accuracy,reaching 93.8%,thus indicating that the classification effect of malware family could be effectively enhanced by such a knowledge graph. Meanwhile,the method was also confirmed of application value by the explainability experiment.

malwareAPI sequencesemantic extractionknowledge graphexplainability

夏冰、何取东、刘文博、楚世豪、庞建民

展开 >

中原工学院前沿信息技术研究院 河南郑州 450007

河南省网络舆情监测与智能分析重点实验室 河南郑州 450007

数学工程与先进计算国家重点实验室 河南郑州 450001

恶意代码 API序列 语义抽取 知识图谱 可解释性

2025

郑州大学学报(理学版)
郑州大学

郑州大学学报(理学版)

北大核心
影响因子:0.437
ISSN:1671-6841
年,卷(期):2025.57(2)