首页|融入注意力机制的水位检测算法

融入注意力机制的水位检测算法

扫码查看
传统图像处理的水位检测算法易受环境因素的影响,因此提出一种融入注意力机制的水位检测算法。首先,利用融入CBAM注意力机制的YOLO v5目标检测模型获取尺身数字类别及其坐标信息;其次,通过融入ECA注意力机制的DeepLabv3+语义分割模型实现水尺和背景的分割;再次,使用边缘检测算法得出水位线信息;最后,根据尺身数字信息和水位线信息将像素值换算为真实水位值。实验结果表明,优化水位检测算法与人工读数误差在 2 cm以内,满足水位检测标准要求。
Water Level Detection Algorithm with Attention Mechanism Incorporated
In view of the susceptibility of traditional image processing water level detection algorithms to environmental factors,a water level detection algorithm has thus been proposed with attention mechanism incorporated.Firstly,the YOLO v5 object detection model,with CBAM attention mechanism incorporated,is utilized to obtain the categorical classification of the water gauge and its corresponding coordinate information.Secondly,the segmentation of water gauge and background can be achieved through the DeepLabv3+semantic segmentation model with ECA attention mechanism incorporated.Then,an edge detection algorithms is applied to obtain water level information.Finally,the pixel values are converted to the true water level values based on the digital information of the ruler and the water level information.The experimental results show that the error between the optimized water level detection algorithm and manual reading is within 2 cm,which meets the requirements of water level detection standards.

water level detectionYOLO v5DeepLabv3+attention mechanism

王坤侠、夏涛

展开 >

安徽建筑大学 电子与信息工程学院,安徽 合肥 230601

安徽省古建筑智能感知与高维建模国际联合研究中心,安徽 合肥 230601

水位检测 YOLO v5 DeepLabv3+ 注意力机制

安徽省住房城乡建设科学技术计划基金安徽省住房城乡建设科学技术计划基金安徽建筑大学智能建筑与建筑节能安徽省重点实验室开放课题基金资助项目

2023-YF0042023-YF113IBES2022ZR02

2025

湖南工业大学学报
湖南工业大学

湖南工业大学学报

影响因子:0.42
ISSN:1673-9833
年,卷(期):2025.39(1)