首页|一类变系数椭圆型Dirichlet边值问题的差分外推格式

一类变系数椭圆型Dirichlet边值问题的差分外推格式

扫码查看
对于变系数椭圆型偏微分方程的Dirichlet边值问题,首先,应用泰勒展开建立五点差分格式,并证明差分格式解的存在唯一性;其次,应用极值原理得到差分格式解的先验估计式,进一步证明其收敛性和稳定性;再次,应用Richardson外推法,建立具有四阶精度的外推格式;最后,应用Gauss-Seidel迭代方法对算例进行求解,数值结果表明Richardson外推法极大地提高了数值解的精度.
Differential Extrapolation Scheme for a Class of Elliptic Dirichlet Boundary Value Problems with Variable Coefficients
In view of the Dirichlet boundary value problem of elliptic partial differential equations with variable coefficients,Taylor expansion is firstly applied for an establishment of a five point difference scheme,thus proving the existence and uniqueness of the difference scheme solution.Secondly,a prior estimation formula for the difference scheme solution can be obtained by applying the extremum principle,with its convergence and stability further proved.Thirdly,Richardson extrapolation method is applied to establish an extrapolation format with fourth-order accuracy.Finally,the Gauss-Seidel iterative method is applied to solve the numerical example,with the numerical results showing that the Richardson extrapolation method greatly improves the accuracy of the numerical solution.

computational mathematicsvariable coefficientelliptic partial differential equationdifference schemeRichardson extrapolation

沈欣、石杨、杨雪花、张海湘

展开 >

湖南工业大学 理学院,湖南 株洲 412007

计算数学 变系数 椭圆型偏微分方程 差分格式 Richardson外推法

湖南省自然科学基金湖南省自然科学基金

2024JJ71462022JJ50083

2025

湖南工业大学学报
湖南工业大学

湖南工业大学学报

影响因子:0.42
ISSN:1673-9833
年,卷(期):2025.39(1)