首页|基于GAN和多尺度空间注意力的多模态医学图像融合

基于GAN和多尺度空间注意力的多模态医学图像融合

扫码查看
针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法.首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图像;其次,整个对抗网络框架采用双鉴别器结构,使得生成器生成的融合图像同时保留多个模态图像的显著特征;最后,构建一种多尺度空间注意力作为编码器进行特征提取的基本模块,利用多尺度结构充分捕获并保留源图像的多尺度特征,并且引入空间注意力更好地保留源图像的结构和细节信息.全脑图谱数据库上的实验结果表明:所提算法生成的融合图像不仅纹理细节更为丰富,有助于人类视觉观察,而且在3种不同类型的医学图像融合任务上平均梯度、峰值信噪比、互信息、视觉信息保真度等客观评价指标的平均值分别达到0.3023、20.7207、1.4414、0.6498,与其他先进的算法相比具有一定的优势.
Multimodal Medical Image Fusion Based on GAN and Multiscale Spatial Attention
Aiming to address the problem of multi-scale feature and texture detail information loss in the process of multimodal medical image fusion,a novel image fusion algorithm based on generative adversarial network (GAN) and multi-scale spatial attention mechanism was proposed. Firstly,the generator adopted an autoencoder structure to extract,fuse,and reconstructed the input images using an encoder and a decoder,generating the fused image. Secondly,the entire GAN framework employed a dual discriminator structure,enabling the generator to preserve salient features from multiple modal images in the fused image. Finally,a multi-scale spatial attention mechanism was constructed as a fundamental module for feature extraction in the encoder. It could effectively capture and re-tain multi-scale features from the source images,and incorporate spatial attention mechanism to better preserve the structures and details of the source images. Experimental results on the Whole Brain Atlas database demonstrated that the fused images generated by the proposed algorithm could exhibit richer texture details,enhancing human visual observation. Furthermore,the algorithm outperformed other advanced algorithms in such objective evaluation metrics as average gradient,peak signal-to-noise ratio,mutual information,and visual information fidelity for three different types of medical image fusion tasks,with average values of 0.3023,20.7207,1.4414,and 0.6498,respectively. Thus,the proposed algorithm demonstrated a certain advantage over other advanced algorithms.

image fusionmultimodal medical imagesgenerative adversarial networkfeature pyramidattention mechanism

林予松、李孟娅、李英豪、赵哲

展开 >

郑州大学网络空间安全学院,河南郑州 450002

郑州大学互联网医疗与健康服务河南省协同创新中心,河南郑州 450052

郑州大学汉威物联网研究院,河南郑州 450002

图像融合 多模态医学图像 生成对抗网络 特征金字塔 注意力机制

2025

郑州大学学报(工学版)
郑州大学

郑州大学学报(工学版)

北大核心
影响因子:0.442
ISSN:1671-6833
年,卷(期):2025.46(1)