首页|具有扰流结构的风冷型锂电池包热管理系统优化

具有扰流结构的风冷型锂电池包热管理系统优化

扫码查看
基于常见新能源车结构设计了一种车载式风冷型锂电池包,利用有限元仿真对风冷型锂电池热管理系统进行模拟计算。结果表明:入口空气流速2 m/s的条件下,顺排和叉排两种结构的最大温差分别为6。96℃ 和6。29℃,叉排结构下最大温差有所降低;增加扰流板为空气流场创造扰流结构,最大温差为5。69℃,相比叉排结构最大温差降低了0。60℃;入口空气流速大于4 m/s时,最大温差低于5℃,满足锂电池最优放电效率;扰流板布置为对称结构时电池包具有最优的冷却性能,电池的最高温度和最大温差明显低于其他排布方式;入口空气流速与电池包冷却性能呈正相关,入口空气流速达到6 m/s时达到最优冷却效果,此后继续增大入口空气流速冷却性能变化幅值减小。所设计的18650锂电池包在隔板间距为对称排布下具有最优的扰流冷却性能,控制入口空气流速大于4 m/s时可以使电池在最优放电效率下运行。
Performance Optimization of Air-cooled Lithium Battery Pack Thermal Management System with Turbulence Structure
The design and simulation of a vehicle-mounted air-cooled lithium battery pack for new energy vehicles were presented. Finite element simulation was employed to analyze the thermal management system of the air-cooled lithium battery pack. The results indicated that with an inlet air velocity of 2 m/s,the maximum temperature differ-ences for the parallel and serpentine structures were 6.96 ℃ and 6.29 ℃,respectively,with a reduction in the maximum temperature difference for the serpentine structure. Introducing flow baffles to create turbulent structures reduced the maximum temperature difference to 5.69 ℃ compared to the serpentine structure,representing a de-crease of 0.60 ℃ in the maximum temperature difference. When the inlet air velocity exceeded 4 m/s,the maxi-mum temperature difference was below 5 ℃,meeting the optimal discharge efficiency of lithium batteries. The bat-tery pack exhibited optimal cooling performance when the flow baffles were arranged in a symmetric structure,with significantly lower maximum temperature and temperature differences compared to other layout arrangements. Fur-thermore,the inlet air velocity was positively correlated with the cooling performance of the battery pack. The opti-mal cooling effect was achieved when the inlet air velocity reached 6 m/s,after which the change in cooling per-formance diminished with further increases in inlet air velocity. In conclusion,the designed 18650 lithium battery pack demonstrated optimal flow disturbance cooling performance with symmetric layout spacing,and controlling the inlet air velocity above 4 m/s enabled the battery to operate at optimal discharge efficiency.

lithium batteryturbulent structurethermal managementinlet air speedtemperature difference

何闯、赵钦新、梁志远

展开 >

西安交通大学热流科学与工程教育部重点实验室,陕西西安 710049

锂电池 扰流结构 热管理 入口空气流速 温差

2025

郑州大学学报(工学版)
郑州大学

郑州大学学报(工学版)

北大核心
影响因子:0.442
ISSN:1671-6833
年,卷(期):2025.46(1)