首页|非线性BBMB方程能量稳定有限元方法高精度分析

非线性BBMB方程能量稳定有限元方法高精度分析

High Accuracy Analysis of an Energy-Stable Fem for Nonlinear Benjamin-Bona-Mahony-Burgers Equation

扫码查看
文章主要研究非线性Benjamin-Bona-Mahony-Burgers(BBMB)方程的能量稳定全离散有限元格式的高精度分析.首先,证明了后向Euler全离散格式的能量稳定性,得到了 H1模意义下有限元解的有界性.其次,利用上述有界性和Brouwer不动点定理证明了离散问题解的存在唯一性.再次,利用协调双线性元的特殊性质,得到了相应的超逼近和整体超收敛结果.最后,通过数值试验验证了理论分析的有效性.
In this paper,the high accuracy analysis of an energy-stable fully discrete finite element(FE)scheme for the Benjamin-Bona-Mahony-Burgers(BBMB)equation is studied.Firstly,the stability of energy of backward-Euler(B-E)fully discrete scheme is proved which leads to the boundedness of the FE solution in H1-norm.Secondly,the existence and uniqueness of solution for approximation problem are proved by employing the above boundedness and Brouwer fixed-point theorem.Thirdly,by use of the special property of bilinear element,the superclose and global su-perconvergence results are derived.Finally,a numerical test is given to verify the validity of the theoretical analysis.

BBMB equationenergy-stable schemesuperclose and superconvergence analysis

王乐乐

展开 >

郑州航空工业管理学院数学学院,河南 郑州 450046

BBMB方程 能量稳定格式 超逼近和超收敛分析

河南省高等学校重点科研项目河南省科技攻关计划

22A110025222102320266

2024

郑州航空工业管理学院学报
郑州航空工业管理学院

郑州航空工业管理学院学报

CHSSCD
影响因子:0.371
ISSN:1007-9734
年,卷(期):2024.42(3)
  • 1