首页|改进DETR的无人机航拍图像沥青路面破损检测算法

改进DETR的无人机航拍图像沥青路面破损检测算法

Improved DETR Algorithm for Asphalt Pavement Damage Detection in UAV Aerial Images

扫码查看
针对航拍沥青路面图像数据不足、检测精度低、存在漏检的问题,研究提出一种改进的DETR(Detection Transformer)端到端沥青路面破损检测模型.该模型采用ResNet50提取特征,引入SiLU激活函数提高特征提取能力,并采用多尺度融合特征图保留更多上下文语义信息;在Transformer的Encoder中使用多尺度可变形自注意力机制,加快模型收敛速度;采用CIoU损失函数提高了裂缝检测的准确性.实验结果表明:改进模型的平均精度达83.7%,比DETR模型在精确率上提高7.4%,召回率上提升了10.9%.提出的改进模型可对沥青路面破损进行有效检测,可为航拍图像的沥青路面破损检测提供参考.
Aiming at the problems of insufficient data,low Detection accuracy and missed detection of aerial images of asphalt pavement,an improved DETR(Detection Transformer)end-to-end asphalt pavement damage detection model is proposed.Firstly,the model uses ResNet50 to extract features,introduces the SiLU activation function to improve feature extraction ability,and uses a multi-scale fusion feature map to retain more context semantic information.Sec-ondly,the multi-scale deformable self-attention mechanism is used in the Transformer Encoder to accelerate the con-vergence speed of the model.Finally,the CIoU loss function is used to improve the accuracy of crack detection.The ex-perimental results show that the average precision of the improved model is 83.7%,which is 7.4%higher than that of the DETR model,and the recall rate is increased by 10.9%.The proposed improved model can effectively detect as-phalt pavement damage,which can provide a reference for the detection of asphalt pavement damage in aerial images.

damage detectiondeformable self-attentionmulti-scale fusionCIoUobject detection

李思宏、姬书得、任赵旭

展开 >

沈阳航空航天大学 航空宇航学院,辽宁 沈阳 110136

破损检测 可变形自注意力 多尺度融合 CIoU 目标检测

2024

郑州航空工业管理学院学报
郑州航空工业管理学院

郑州航空工业管理学院学报

CHSSCD
影响因子:0.371
ISSN:1007-9734
年,卷(期):2024.42(5)