首页|基于改进型预估FOPID的选择性激光烧结预热温度控制研究

基于改进型预估FOPID的选择性激光烧结预热温度控制研究

扫码查看
针对选择性激光烧结(SLS)过程中预热温度控制的非线性不确定性和时延滞后等问题,本研究提出了一种改进预估分数阶比例-积分-微分(FOPID)控制器用于温度控制.该控制器首先整合了 Smith预估器以消除纯时滞环节产生的震荡,提高被控系统的鲁棒性;然后提出了一种新颖的敏感参数自整定方法,即增强型混合阿奎拉优化器(EAOCBO)用于对预估FOPID控制器的模型参数进行最优设计.阿奎拉优化器(AO)是一种仿生智能算法,为克服其探索和开发阶段的不平衡以及易于陷入局部最优的缺陷,引入了白冠鸡优化算法中的领导者更新机制,自适应切换系数以及折射反向学习策略,在9个IEEE CEC2017测试函数中,EAOCBO的优化表现相较于其他对比算法有着显著增强.为了验证所提出的EAOCBO-Smith预估FOPID控制器的有效性,通过Matlab/Simulink软件仿真分析了单位阶跃信号下的动态响应特性并将其进一步应用于烧结样机开展成型效果试验.结果表明,所提的控制方法相较于其他先进的FOPID控制器有着更低的调节时间和稳态误差,这表明了其出色的响应速度和控制精度,同时,EAOCBO-Smith预估FOPID控制器在实际应用中也能精确地控制预热温度,改善温度场的均匀性,进而提高成型件的尺寸精度.
Research on preheating temperature control for selective laser sintering based on modified predictive fractional-order PID
In response to the problems of nonlinear uncertainty and time delay lag of the preheating temperature control in the selective laser sintering(SLS)process,a modified predictive fractional-order proportional-integral-differential(FOPID)algorithm for temperature control is proposed in this study.The designed controller firstly integrates the Smith predictor to eliminate the oscillations generated by the pure time lag chain,which is considered to improve the robustness of the controlled system.Then,a new novel sensitive parameter self-tuning method called EAOCBO is proposed to provide the optimal design of model parameters for the predictive FOPID controller.Aquila optimizer(AO)is a bionic intelligent algorithm,in order to overcome its shortcomings of the imbalance exploration and exploitation phase and ease to be trapped in the local optimum,the leader updating mechanism from COOT bird optimization,adaptive switching factor,and refracted opposition-based learning are introduced in the original algorithm.On the nine IEEE CEC2017 test functions,the optimization performance of EAOCBO is significantly enhanced compared to the other compared algorithms.In order to verify the effectiveness of the proposed EAOCBO-predictive FOPID controller,its dynamic response characteristics under unit step signal are simulated and analyzed by Matlab/Simulink software and further applied to the sintering machine to carry out the actual forming experiment.The results show that the proposed controller has lower regulation time and steady state error compared with other advanced FOPID controllers,which indicates its excellent response speed and control accuracy.Moreover,the EAOCBO-predictive FOPID controller can also precisely control the preheating temperature and improve the uniformity of the temperature field in practical applications,which in turn boosts the dimensional accuracy of the forming parts.

selective laser sinteringfractional-order PIDsmith predictoraquila optimizerparameter self-tuning

崔昊、郭艳玲、肖亚宁、蒋成雷、李健、王扬威

展开 >

东北林业大学机电工程学院,黑龙江哈尔滨 150040

选择性激光烧结 分数阶PID Smith预估器 阿奎拉优化器 参数自整定

国家自然科学基金黑龙江省自然科学基金

52075090YQ2021E002

2024

制造技术与机床
中国机械工程学会 北京机床研究所

制造技术与机床

CSTPCD北大核心
影响因子:0.264
ISSN:1005-2402
年,卷(期):2024.(1)
  • 6