首页|基于改进U-Net的小型机械零件识别与定位方法研究

基于改进U-Net的小型机械零件识别与定位方法研究

扫码查看
针对基于机器视觉的小型机械零件识别速度慢、定位不精确等问题,文章提出一种改进U-Net(improve U-Net,IU-Net)和最小外接矩阵(minimum bounding rectangle,MBR)结合的小型机械零件识别和定位方法(IU-Net-MBR).首先,搭建视觉分拣试验平台,制作小型机械零件数据集;其次,为了提高特征提取效率,将U-Net的特征提取网络替换成轻量级MobilenetV2网络,降低模型的参数和计算量;然后,为了提高U-Net的分割精度和鲁棒性,在网络结构中引入SE(squeeze and excitation)注意力模块;最后,使用最小外接矩阵得到零件的长宽基本参数,实现零件的识别和定位.试验表明,IU-Net相对于 U-Net在平均交并比 Miou(mean intersection over union)和像素准确率PA(pixel accuracy)分别提高 4.39%和 3.82%.在处理图像时,IU-Net相对于U-Net速度提升 76.92%.与主流分割模型相比,IU-Net实现了更好的分割效果,有效地提高了小型机械零件的分割精度.在抓取试验中,IU-Net-MBR在识别率和抓取率上分别达到了 100%和 96.67%.
Research on the recognition and localization method of small mechanical parts based on improved U-Net
Aiming at the problem of slow recognition and inaccurate localization of small mechanical parts based on machine vision,this paper proposes a method of recognition and localization of small mechanical parts by combining Improve U-Net(IU-Net)and minimum bounding rectangle(IU-Net-MBR).Firstly,a visual sorting test platform is built to produce a data set of small mechanical parts.Secondly,in order to improve the feature extraction efficiency,the feature extraction network of U-Net is replaced by a lightweight MobilenetV2 network,which reduces the parameters of the model and the amount of computation.Then,in order to improve the segmentation accuracy and the robustness of the U-Net,the SE(squeeze and excitation)attention module.Finally,the length and width basic parameters of the parts are obtained using the minimum outer connection matrix to realize the part identification and localization.The experiments show that IU-Net improves 4.39%and 3.82%in mean intersection over union(Miou)and pixel accuracy(PA)relative to U-Net.In processing images,the speed of IU-Net is improved by 76.92%relative to U-Net.compared to mainstream segmentation models,IU-Net achieves better segmentation results and effectively improves the segmentation accuracy of small mechanical parts.In the grasping test,IU-Net-MBR achieves 100%and 96.67%in recognition rate and grasping rate,respectively.

small mechanical partsU-Netminimum external rectangleidentification and localization

周林、何理、王宸、黄玉春、周志霄、王生怀

展开 >

湖北汽车工业学院机械工程学院,湖北 十堰 442000

上海大学上海市智能制造与机器人重点实验室,上海 200072

中国工程科技十堰产业技术研究院,湖北 十堰 442000

湖北万润新能源科技股份有限公司,湖北 十堰 442500

展开 >

小型机械零件 U-Net 最小外接矩形 识别与定位

国家自然科学基金教育部人文社科项目湖北省重点研发计划项目湖北省高等学校中青年科技创新团队计划项目湖北省社科基金湖北省教育厅青年项目湖北汽车工业学院博士基金

5147515020YJCZH1502021BAA056NOT2020001821Q174Q20191801BK201905

2024

制造技术与机床
中国机械工程学会 北京机床研究所

制造技术与机床

CSTPCD北大核心
影响因子:0.264
ISSN:1005-2402
年,卷(期):2024.(2)
  • 13