首页|基于改进遗传算法的柔性作业车间调度研究

基于改进遗传算法的柔性作业车间调度研究

扫码查看
针对柔性作业车间的多目标调度问题,文章建立以最大完工时间、能耗为目标的数学模型,提出一种多目标的改进遗传算法的求解方法.首先,在交叉算子中使用均匀交叉法,采用了基于邻域的变异算子.其次,针对交叉变异算子进行了非均匀改进,旨在增加算法搜索能力.通过动态调整非均匀交叉和非均匀变异的概率,提高搜索空间覆盖率,避免陷入局部最优解.最后,采用基准算例Kacem测试集进行测试.实验证明,该改进算法有效地解决了同时考虑最大完工时间和能耗的多目标调度问题,取得了显著的改善效果.
Research on flexible job-shop scheduling based on improved genetic algorithm
For the multi-objective scheduling problem in a flexible job shop,we have established a mathematical model with the objectives of maximizing the completion time and minimizing energy consumption.To address this problem,we propose an improved multi-objective genetic algorithm.Firstly,using the uniform crossover operator in the crossover process and introduce a neighborhood-based mutation operator.Secondly,improving the non-uniformity of the crossover and mutation operators to enhance the algorithm's search capability.By dynamically adjusting the probabilities of non-uniform crossover and mutation,we increase the coverage of the search space and avoid getting trapped in local optima.Finally,testing the proposed algorithm using the Kacem benchmark test set.The experimental results demonstrate that our improved algorithm effectively solves the multi-objective scheduling problem considering both maximum completion time and energy consumption,achieving significant improvements.

flexible job-shop schedulinggenetic algorithmnon-uniform crossovernon-uniform mutation

金秋、王清岩、原博文

展开 >

天津科技大学经济与管理学院,天津 300457

柔性作业车间调度 遗传算法 非均匀交叉 非均匀变异

全国工程专业学位研究生教指委华北区域协作组研究一般项目(2022)

202302

2024

制造技术与机床
中国机械工程学会 北京机床研究所

制造技术与机床

CSTPCD北大核心
影响因子:0.264
ISSN:1005-2402
年,卷(期):2024.(4)
  • 16