首页|基于元学习聚合分类器的流程工业故障诊断

基于元学习聚合分类器的流程工业故障诊断

扫码查看
针对基于多元统计分析和深度学习的故障诊断方法需要大量的训练样本,但当前流程工业具有故障样本不足等特点,文章提出了一种模型无关的聚合分类器元学习框架(MAACML).首先,该框架将模型无关的元学习与卷积神经网络相结合并引入一种聚合分类器来提高模型的分类准确率和泛化能力;然后,对田纳西伊士曼仿真数据集进行仿真实验验证模型的性能;最终,为了验证模型在实际数据集上的效果,在实际压缩机组数据集进行验证.研究结果表明:MAACML框架具有较高的平均准确率优于其他方法,且具有良好的泛化能力;并且引入的聚合分类器模块对分类结果有明显提升作用;在实际数据集上的分类准确率达到 100%,证明了MACCML框架的实用性和有效性.
Process industrial fault diagnosis based on meta-learning aggregated classifier
A model-agnostic aggregation classifier meta-learning framework(MAACML)is proposed to address the issue of insufficient fault samples in current industrial processes for fault diagnosis methods based on multivariate statistical analysis and deep learning.Firstly,this framework combines model-agnostic meta-learning with convolutional neural networks and introduces an aggregation classifier to improve the classification accuracy and generalization ability of the model.Then,simulation experiments are conducted on the Tennessee Eastman simulation dataset to validate the performance of the model.Finally,the model is validated on an actual compressor unit dataset to evaluate its effectiveness.The research results demonstrate that the MAACML framework achieves higher average accuracy compared to other methods and exhibits good generalization ability.The introduced aggregation classifier module significantly enhances the classification results.The classification accuracy on the actual dataset reaches 100%,confirming the practicality and effectiveness of the MAACML framework.

process industrymeta learningmodel-agnostic meta-learningconvolutional neural networkfault diagnosis

崔鹏飞、亚森江·加入拉、许晨星、史宗帅

展开 >

新疆大学机械工程学院,新疆 乌鲁木齐 830017

流程工业 元学习 模型无关的元学习 卷积神经网络 故障诊断

国家自然科学基金新疆大学博士科研启动基金

52065065BS190216

2024

制造技术与机床
中国机械工程学会 北京机床研究所

制造技术与机床

CSTPCD北大核心
影响因子:0.264
ISSN:1005-2402
年,卷(期):2024.(5)
  • 4