首页|基于残差网络多尺度特征融合的滚动轴承故障诊断

基于残差网络多尺度特征融合的滚动轴承故障诊断

扫码查看
针对传统故障诊断方法在面临复杂工况时出现的特征提取不足、分类器选取困难、诊断精度不高等问题,提出了一种基于残差神经元网络多尺度特征融合的滚动轴承故障诊断模型并用于电机轴承的故障诊断.首先,采用小波变换将轴承振动信号转换为二维时频图作为输入数据集;然后,在残差网络中构建多尺度特征融合模块,提取故障样本不同尺度下的特征;最后,将轴承数据集输入到网络中,实现特征提取及故障诊断.实验结果表明,基于残差网络多尺度特征融合的故障诊断模型可以有效提取信号特征,提高了故障诊断的准确性.
Rolling bearing fault diagnosis based on residual network and multi-scale feature fusion
Aiming at the problems of insufficient feature extraction,difficult classifier selection and low diagnostic accuracy in traditional bearing fault diagnosis under complex working conditions,a rolling bearing fault diagnosis model based on multi-scale feature fusion of residual neural network is proposed and used for fault diagnosis of motor bearings.Firstly,the wavelet transform is used to transform the bearing vibration signal into a two-dimensional time-frequency diagram as the input data set.Then,a multi-scale feature fusion module is constructed in the residual network to extract the features of fault samples at different scales.Finally,the bearing data set is input into the network to realize feature extraction and fault diagnosis.Experiment results show that the proposed fault diagnosis model based on multi-scale feature fusion of residual network can fully extract signal features and improve the accuracy of fault diagnosis.

rolling bearingfault diagnosiswavelet transformresidual networkmulti-scale feature fusion

樊立萍、张晗

展开 >

沈阳化工大学信息工程学院,辽宁 沈阳 110142

滚动轴承 故障诊断 小波变换 残差网络 多尺度特征融合

国家外专项目辽宁省校际合作重点研发项目辽宁省重点研发计划

国科发专[2021]49号辽教发[2020]28号LJKZZ20220057

2024

制造技术与机床
中国机械工程学会 北京机床研究所

制造技术与机床

CSTPCD北大核心
影响因子:0.264
ISSN:1005-2402
年,卷(期):2024.(6)