首页|六自由度机器人重力误差识别与补偿方法

六自由度机器人重力误差识别与补偿方法

扫码查看
为了提高六自由度关节机器人末端执行器的位置精度,文章基于自主设计研发的六自由度关节机器人进行重力误差识别和补偿方法研究.首先,基于D-H法建立机器人各关节转角与末端位置坐标的关系模型,提出采用Levenberg-Marquardt进行主要关节实际扭转刚度的计算方法;其次,基于有限元分析软件,进行不同位姿下机器人在重力场作用下的静力学分析,建立机器人位姿参数为输入、末端变形为输出的BP神经元网络模型,以实现机器人不同位姿下连杆弯曲变形导致的末端位置误差的在线预测;最后,基于自主设计的专用测头进行机器人末端位置误差补偿实验.实验数据表明,补偿后的定位精度比补偿前在X和Z方向分别提高了 93.6%和 92.2%.
Identification and compensation method for gravity error of 6-DOF robot
In order to improve the position accuracy of the end effector of the 6-DOF joint robot,this paper studies the method of gravity error recognition and compensation based on the self-designed 6-DOF joint robot.Firstly,the relationship model between the angle of each joint and the position coordinates of the end of the robot is established based on D-H method,and the actual torsional stiffness of the main joint is calculated by Levenberg-Marquardt.Secondly,the static analysis of the robot under the action of gravity field under different poses is carried out using finite element analysis software,and the BP neural network model with the pose parameters as input and the end deformation as output is established to realize the online prediction of the end position error caused by the bending deformation of the connecting rod under different poses.Finally,based on the self-designed special probe,the robot end position error compensation experiment is carried out.The experimental data show that the positioning accuracy after compensation is increased by 93.6%and 92.2%in the X and Z directions,respectively.

robotgravity error identificationgravity error compensationBP neural networkD-H method

任利娟、陈恪、闫伟健、李堃、于殿明、张广鹏

展开 >

西安理工大学机械与精密仪器工程学院,陕西 西安 710048

机器人 重力误差识别 重力误差补偿 BP神经元网络 D-H法

国家自然科学基金陕西省自然科学基金

522755112023-JC-QN-0428

2024

制造技术与机床
中国机械工程学会 北京机床研究所

制造技术与机床

CSTPCD北大核心
影响因子:0.264
ISSN:1005-2402
年,卷(期):2024.(9)